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GENERAL INTRODUCTION 

In Part I the quenching of the excited state of chromium poiypyridine 

complexes by Ti(lll) is discussed. Experiments were done to evaluate emission 

lifetimes as a function of the important concentration variables, [Ti(lll)] and [H+]. 

Also, the second order rate constants of the quenching by both TI(H20)6^+ and 

Ti(H20)50H2+ were examined in terms of the Marcus cross relation. Studies 

were carried out in the transient absorption mode to detect Cr(NN)32+ and to 

determine if back electron transfer occurs to yield ground state Cr(NN)33+ and 

Ti(lll). The quantum yields of this reductive quenching by Ti(lll) were determined 

as a function of [Ti(lll)]. 

Part II involves the colligation of a series of carbon-centered radicals with a 

chromium(ll) macrocyclic complex. Colligation reactions of alkyi radicals and 

metal complexes studied to date divide cleanly into two groups. The first group 

includes Cr(H20)62+ and Co(N4mac)2+, where the rates decrease relatively little 

as the substituents on the a carbon atom increase in bulk. In contrast, the 

second group, which includes both isomers of Ni([14]aneN4)2+, shows rates that 

decrease markedly with the size of the substituents. The system studied here 

involved the complex Cr([15]aneN4)2+, chosen to learn whether incorporation of 

the chromium into a macrocycle causes its reactivitiy pattern to shift to that of the 

nickel macrocycles. The equilibrium constants for radical binding are discussed 

in terms of Cr-C and Cr-0H2 bond making and bond breaking. 

The study of sulfur-centered thiyi radicals makes up Part III. In general 

studies involving thiyI radicals have been carried out using pulse radiolysis. 

However, a much simpler method for generating thiyI radicals and studying their 
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reactions is available using laser flash photolysis. This method involves well-

established reactions to generate thiyi radicals and allows the study of a wide 

variety of their reactions in aqueous solution. The repair reaction is examined 

for the methyl and ethyl radicals with several thiols. Also, studies of reactions of 

ethane thiyI radicals with a number of metal complexes are described. 

Explanation of dissertation format 

The dissertation is organized into three sections following the "Alternate 

Thesis Format." Each section corresponds to a manuscript submitted for 

publication in Inorganic Chemistry. Each section is self-contained with its own 

tables, figures, schemes and references in standard format for Inorganic 

Chemistry. All the work described here was performed by P.L. Huston. 
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PART I QUENCHING OF 'CrLsS^ WITH TITANIUM(III) 
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INTRODUCTION 

Electron transfer reactions of Ti(lll) have been widely studied in recent 

years. Many studies have been carried out with complexes of Ru(lll)i and of 

Co(lll)2 as oxidants. Other oxidants used include iodine^, 1-hydroxy-1-

methylethyl radicals^, V(IV)5, V(V)®, and complexes of Nl(lll)7 and Os(lll).8 Often 

an inverse dependence on [H+] is found, indicating TiOH2+ rather than Ti3+ is 

the active reductant. Both Ti3+ and TiOH2+ are effective reductants of Ru(lll) 

complexes only if an electron delocalizing ligand is present on the oxidant. In 

the reduction of Co(lll) complexes the presence of a sufficiently hard bridging 

ligand on the oxidant is necessary if both species are to be effective, otherwise, 

only TiOH2+ is effective. Thus, both Ti3+ and TiOH2+ are effective in reducing 

Ru2(OAc)4+, but only TiOH2+ can reduce tris(pentane-2,4-dionato)ruthenium 

(III).1'9 Other cases where both are effective include Co(NH3)4C2O4+,''0 

complexes of Os(lll),^ and derivatives of salicylatocobalt(lll).ii When both Ti(lll) 

species react, TiOH2+ is generally at least an order of magnitude faster than 

Ti3+. Since the Ti(IV) species formed is Ti02+, then it might be expected that a 

transient intermediate with a shorter Ti-O bond as in TiOH2+ would be more 

favorable. 

Inner sphere mechanisms have been found to operate in cases where there 

is an efficient bridging ligand such as oxalate,thiocyanate,i3 salicylate"''^ or 

acetate. 15 However, ligands such as Cl- or SO^^- that are generally considered 

to be good bridges in inner sphere processes are not always efficient for Ti(lll) 

electron transfer reactions. In these inner sphere reactions it is sometimes the 

case that substitution on Ti(lll) is the rate limiting step. 16 



www.manaraa.com

Outer sphere electron transfer processes involving Ti(lll) have often shown 

agreement with Marcus theoryJ^ studies with oxidants such as Ru(lll) 

complexes lacking an efficient bridging ligand have linear free energy 

relationships. In a study involving poly(pyridine)osmium (III) complexes self-

exchange rates were estimated to be > 3 x 10 ^ L mol'^s ^ for Ti4+/3+ and ^10 ^ 

M Is-1 for TiOH3+/2+.8 In the case of Ni(lll) complexes the reactions were found 

to fit a Marcus correlation despite the large driving forces/ 

The Ti(IV) species formed in solution by these reactions has been uncertain 

for many years due to conflicting indirect evidence. Based on ionic strength 

variation studies, the Ti(IV) species has a charge of 2+ (7102+ or Ti(OH)22+).5 

Ion exchange elution techniques indicated that a hydroxo species, Ti(0H)22+ is 

present in HCIO4 up to 1.5 M.is A potentiometric investigation of Tl(IV) 

hydrolysis indicated that Ti02+ is the only species present.8.i9 The adsorption 

of Ti(IV) from HCI and H2SO4 solutions by ion exchange resins indicated that 

Ti02+ is the predominant species.20 Kinetic studies of electron transfer and 

complexation reactions have given conflicting results, but generally support the 

Ti02+ species. In a study of Cr2+ reduction of Ti(IV) there was no evidence for 

Cl- complexation, seemingly ruling out Ti(0H)22+.2i As recently as 1985 

Ti(OH)22+ has been suggested to be the predominant species, based on 

determinations of [Ti(IV)]/[Ti(lll)] ratios in solutions of Ti(IV) chloride equilibrated 

with H2(g).22 But, also in 1985, the first direct evidence for Ti02+ was reported23 

when the TiO Raman stretch was observed. Since that time it has been reported 

that Ti02+ is in equilibrium with low concentrations of hydroxo and oligomeric 

species such as Ti3044+, TI3O3O2H35+ and Ti40402H48+ in more concentrated 

Ti(IV) solutions (>0.1 M).24 
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A number of factors must be considered in studying Ti(lll). Oxygen does not 

react with Ti3+, but it oxidizes T10H2+ in an outer sphere process (k = (4.25 ± 

0.13) M is-i at 25 °C in 1 M LiCI).25 Ti(ill) reduces perchlorate in a slow reaction 

that is retarded by CI" and accelerated by H+.26 jq avoid this complication a 

LiCI/HCI medium is generally used. The complexation of Ti(lll) with CI" has a 

measured stability constant K-j = 0.07 - 0.2 M-"'.27 Earley has suggested that the 

stability of such a Ch complex must be small as no CI' effect is observed.^s 

Finally, stainless- steel needles must be avoided because of dissolution in HCI 

giving Fe(ll) in Ti(lll) solutions.^a 

Ti(lll) was previously reported^ to quench the excited state emission of 

(polypyridine)ruthenium(ll) complexes. This is believed to occur via an energy 

transfer mechanism based on the lack of electron transfer products observed 

and on the rate, which is much faster than that expected for reductive quenching 

in this system. Also, there is considerable overlap between Ru(ll) emission 

(570-660 nm) and Ti(lll) absorption (502 nm with a shoulder at 575 nm). 

In this study Ti(lll) was used to quench the excited state emission of 

(polypyridine)chromium(lll) complexes. 



www.manaraa.com

I 

7 

EXPERIMENTAL 

Solvents and reagents 

Tris-(2,2'-bipyridine)chromium(lll) perchlorate was prepared29 by 

electrochemically reducing Cr(CI04)3 at constant voltage (1.77 V) under argon. 

Free bpy (G.F. Smith) was added to form Cr(bpy)32+ which was then oxidized to 

Cr(bpy)33+ by adding Br2 in HCIO4. Excess free iigand was removed by 

repeatedly extracting with chloroform until no bpy was seen in the organic layer. 

A saturated solution of NaCIO^ was added and Cr(bpy)3(CI04)3 precipitated out 

on cooling in an ice-salt bath. The yellow solid was filtered and washed with 

small amounts of ice-cold water and ether. The Cr(bpy)33+ was characterized 

by comparison with the published UV-vis spectrum^O and by the lifetime of the 

lowest energy excited state.^a Other polypyridyl complexes were available from 

earlier studies.^"! 

Solutions of Ti(lll) were prepared^^b as follows, using Teflon needles to 

avoid contact with metal. Titanium sponge (Alfa) was dissolved in 3.3 M HCI by 

stirring at 30-40 °C under argon for 36-48 hours. The resulting purple solution 

was filtered through a Metricel membrane filter (5 fxm) and stored under argon at 

0 °C. The Ti(lll) concentration was determined spectrophotometrically at 502 nm 

( e = 3.97 M-icm-i) and the Ti(IV) at 310 nm (e||,= 0.3 M-icm-i and Eiv = 15.2 

M'^cm i).6a The acid content was determined by direct titration with NaOH to a 

phenolphthalein endpoint. The titrations were carried out slowly with constant 

stirring to prevent formation of a blue-gray polymer.sc A white precipitate, TiOg, 

formed according to equation 1. The acid concentration was calculated from 

4Ti3+ + O2 + 120H- ^ 4Ti02{8) + 6H2O (1 ) 
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the relation [OH ] = [H+] + 3[Ti3+], by assuming the Ti02 formed quantitatively. 

All water used in this study was in-house distilled, deionized water passed 

through a Millipore-Q purification system. LICI (Baker) was recrystallized three 

times from water and standardized by passing through a Dowex H+ exchange 

column followed by titration with NaOH. The hydrochloric acid (Mallinckrodt), 

perchloric acid (Fischer) and LiCIO^ (Aldrich) were used as purchased. The 

argon (99.99% pure, Air Products Corp.) used for purging was passed through 

chromous towers to remove any trace oxygen. [Co(NH3)5Br]Br2 and 

[Co(NH3)5(H20)](CI04)3 were available in our laboratory stores. The 

[Co(NH3)5Br]Br2 was converted to the more soluble perchlorate salt by 

recrystallizing three times from dilute HCIO4 in the presence of a large excess of 

LiCI04. 

KInetlQS 

The laser flash photolysis system used for this study was a flash-lamp 

pumped dye laser (Phase-R model DL-1100). The pulse width is ~0.6 ^is and 

the excitation dyes used were Coumarin-460 (1.5 x 10-4 M in MeOH) and 

LD 423 (2 x 10-4 M in MeOH). The arrangement is similar to one described in 

the literature.32 The single-shot laser pulse impinges on a square 1-cm 

fluorescence cell. The emission of the excited states was monitored at 727 nm 

with a Hamamatsu R928 photomultipller tube positioned at 90° to the exciting 

pulse. Transient absorbance measurements of Cr(NN)32+ species and the 

excited states were monitored at appropriate wavelengths^O-^^ using a 50-W 

quartz-halogen analyzing lamp. The voltage vs. time data was collected, 

digitallzed and displayed on a NIcolet model 2090-3A digitalizing oscilloscope. 

The data was transferred to an interfaced Apple 11+ microcomputer for storage 
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and processing using a least-squares, first-order kinetics fitting program. The 

error in reported rate constants is estimated to be ^10 % based on scatter in 

replicate laser shots. 

Cells containing LiCI and HCI were prepared using Teflon needles in all 

experiments involving Ti(lll), and the Ti(lll) was added only after cells were 

degassed. All cells were degassed at least 15 minutes prior to flashing. The 

Cr(lll) was injected just before flashing using a fresh metal needle tip. Cells 

were generally flashed just once, but those that were flashed twice were moved 

so that a different portion of the cell was exposed to the laser pulse. 

Laser aotlngmetry 

The excited state extinction coefficient at 445 nm was measured by laser 

actinometry with Ru(bpy)32+ LD-423 dye was chosen to maximize Cr(bpy)33+ 

absorbance and to minimize "bleaching" of Ru(bpy)32+ solutions. A solution of 

1.89 X IO'SM Ru(bpy)32+ (£423 = 10,600 M-Icm-1)34 has an absorbance of 

0.20. The natural decay rate of the *Ru(bpy)32+ excited state 

Ru(bpy)§+ + hv -> *Ru(bpy)§+ (2) 

in D2O is 1.0 X 106 s-1.43 Co(NH3)5Br2+ is known to quench the excited state 

in a reaction that is nearly diffusion controlled (k-=-2.5-x-109 L mol-is-i).35 

*Ru(bpy)i+ + Co(NH3)5Br2+ + 5H+ ^ Ru(bpy)g+ +C02+ + 5NH3 + Br (3) 

Based on these rates, 5.0 x 10-3 M Co(NH3)5Br2+ should quench ~93% of the 

Ru(bpy)32+ excited state. This concentration of Co(NH3)5Br2+ 

(£423 = 12.3 M-icm-i) has an absorbance of 0.0615. The labile Co(ll) complex 

formed in the oxidative quenching reaction rapidly dissociates preventing return 

electron transfer. 
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A 1-cm cell containing these concentrations of Ru(bpy)32+ and 

Co(NH3)5Br2+ in 0.10 M HCIO4 In D2O was flashed. A permanent (longer than 

200 |is) loss of absorbance was observed at 445 nm due to the loss of 

Ru(bpy)32+ (6445 = 12,700 M-icm-"") and formation of Ru(bpy)33+ 

(6445 = 1500 M-Icm-1).34 

In the second part of this experiment the above conditions were matched as 

closely as possible. A 2.78 x 10^"* M solution of Cr{bpy)33+ 

(6423 = 720 M-''cm-i)30 has an absorbance of 0.20. Because Co(NH3)5Br2+ 

quenches the excited staters of Cr(bpy)33+ so rapidly, Co(NH3)5H203+ was 

substituted. It quenches the excited state with a rate constant of 

1 X 106 L mol-is-i 37 and has an 6423 of 21.6 M'^cm-i. Thus, a 

concentration of 2.85 x 10'^ M is required to match the absorbance of 

Co(NH3)5Br2+ in the Ru(bpy)32+ experiment. 

A 1-cm cell containing these concentrations of Cr(bpy)33+ and 

Co(NH3)5H203+ in 0.10 M HCIO4 was flashed. The absorbance of the 

Cr(bpy)33+ excited state was monitored at 445 nm. The maximum absoriaance 

change was taken as due to the loss of the ground state Cr(ill) complex and 

formation of the excited state. The concentration of the excited state formed in 

the flash was assumed to be equal to the *Ru(bpy)32+ formed in the previous 

experiment. Thus, the AE could be calculated. 
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RESULTS 

The lifetimes of the excited states were measured in 1 M HCI by 

monitoring the emission at 727 nm. For each complex the Cr(lll) ground state 

concentration was varied so that t°, the lifetime at infinite Cr(lll) dilution, could be 

obtained by extrapolation. The concentrations and observed rate constants are 

listed in the Appendix in Tables A1 through A7. The x° values are given in Table 

1 and agree with previously reported values.29.38,39 

Table 1. Emission lifetimes of Cr(NN)33+ excited states^ 

NN x°/HS 

bpy 69 63 66 — 

4,4'-(CH3)2bpy 197 230 180 200 

phen 271 270 270 330 

5-Clphen 136 130 156 180 

5-(CH3)phen 320 - 310 420 

5,6-(CH3)2Phen 314 - - 4206 

4,7-(CH3)2Phen 451 340 580 5706 

a In 1 M HCI; x° values obtained by extrapolation to infinite Cr(NN)33+ 
dilution, b Ref, 8. c Ref. 29. d Ref, 39. e Solutions contained 4 % CH3CN. 

Upon addition of Ti(lll) the emission lifetime was shortened significantly. 

Also, the formation of the corresponding Cr(ll) complex could be observed by 

monitoring its absorbance increase. The absorbance change was permanent, 
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indicating the Cr(ll) complex was stable for at least 200 ^s. For example, in the 

case of Cr(5-Clphen)33+, formation of Cr(5-Clphen)32+ was monitored at 410 

nm. A typical trace is shown in Figure 1. To further support the Cr(NN)32+ 

formation the absorption spectrum of the product in the case of Cr(bpy)33+ was 

taken point by point and is shown in Figure 2. This spectrum agrees with that 

reported for Cr(bpy)32+.33 

Quenching rate constants were measured in 1 M HCI by monitoring the 

emission at 727 nm and varying the Ti(lll) concentration. The specific observed 

rate constants and concentrations used are listed in the Appendix in Tables A8 

through A14. Plots of k^bs vs. [Ti(lll)]T for the different chromium complexes are 

shown in Figure 3. For each case the resulting second order rate constant, kq, is 

listed in Table 2 along with the intercept, k®obs- The intercepts are higher than 

the k° values that would be predicted from the lifetime measurements. This 

difference may be accounted for by Cr(ll) quenching and is discussed later. 

Acid dependence 

For each Cr(III) complex the H+ concentration was varied from 0.1 to 1.0 M 

with HCI, using LiCI to maintain ionic strength at 1 M. The specific 

concentrations and observed rate constants are given in the Appendix in Tables 

A15 through A21. The observed rate constant is due to the terms shown in 

equation 4. 

kobs = k&s + ki[TiOH2+][*Cr3+] + k2[Ti^1[*Cr3+] (4) 

Rearranging and applying the Kg expression for Ti(H20)63+ yields equation 5. 
., kpbs - kobs _ kjKa + kgfH^] 

" rn(lll)]T Ka + [HI ^ ' 
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Figure 1 .  Formation of Cr(5-Clphen)3 monitored at 410 nm on a time scale of 1 

per point 
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Figure 2. Spectrum of Cr(bpy)32+ formed in the quenching of *Cr(bpy)33+ by 

71(111) 
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Figure 3. Plots of the linear variation of kobs with [Ti(lll)]T in the quenching of 

*Cr(NN)33+ by Ti(lll) In 1 M HCI 
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Table 2. Quenching rate constants in 1 M HCI 

NN kq/IO? k°obs®/104 k°b/l04 

L mol-is"i s-1 S'l 

bpy 1.99 2.6 1.5 

4.4'-(CH3)2bpy 0.334 0.90 0.56 

phen 2.12 1.1 0.50 

5-Clphen 3.87 1.9 0.90 

5-(CH3)phen 1.69 1.1 0.63 

5,6-(CH3)2phen 1.12 0.83 0.53 

4,7-(CH3)2phen 0.311 0.49 0.46 

3 Values obtained from extrapolation to infinite Ti(lll) dilution, b Values in 
absence of Ti(lll). 

[Ti(lll)]T = [Ti(H20)50H2+] + rn(H20)#+] (6) 

A value for Kg of 4.6 x 10-3 M has been reported^o in 1 M ionic strength with 

LiCI. The data were fit to equation 5 using a non-linear least squares 

program. Values for ki and kg are given in Table 3. Fitted plots of k' vs. [H+]-i 

are shown in Figures 4 and 5. 

The effect of [CI ] on the rate of quenching was investigated using CIO4' to 

maintain 1 M ionic strength. This was done at relatively low acid concentration 

(0.1 M) to slow the rate of reduction of 0104- by Ti(lll). The Cr(bpy)33+ ground 

state concentration was 4.93 x 10'"^ M and the total Ti(lll) concentration was 

5.58 X 10-3 M. The average kobs in 1M CI* was 2.32 x 10^ s-i. The average 

kobs in 0.9 M 0104" and 0.1 M CI* was 9.81 x 10^ s'^-
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Table 3. Quenching rate constants for TiOH2+ (k^) and Ti3+ (k2)^ 

NN ki /108 k2/107 

L mol-is-i L mol'is'i 

bpy 6.0 1.9 

4,4'-(CH3)2bpy 1.0 0.26 

phen 4.6 1.6 

5-Clphen 9.7 3.7 

5-(CH3)phen 4.7 1.5 

5,6-(CH3)2phen 3.0 1.2 

4,7-(CH3)2phen 0.81 0.28 

a In HCI/LiCI with ^1 = 1.0 M. 

Quantum yfglds 

The Cr(bpy)33+ excited state extinction coefficient at 445 nm was measured 

by laser actinometry to be ca. 3000 M-icm-i. Small signals limited the accuracy 

of this experiment. This value was used to determine the concentration of 

*Cr(bpy)33+ formed in the flash. The total amount of Cr(bpy)32+ formed was 

measured at 560 nm (e= 4800 M-icm i). Thus, the quantum yield for Cr(bpy)32+ 

formation was calculated from equation 7. Values for (j)cr at different Ti(lll) 

concentrations are listed in Table 4. 
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Figure 4. Effect of [H+] on the quenching of *Cr(NN)33+ by Ti(lll) 
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Figure 5. Effect of [H+] on the quenching of *Cr(NN)33+ by Ti(lll) 
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Table 4. Quantum yields for formation of Cr(bpy)32+a 

[Ti(lll)]/ [*Cr3+]b/ 1/2[Cr(ll)IooC/ <k)bs <t>calc^ 

10-3 M 10-5 M 10-5 M 

1.69 1.08 0.53 0.49 0.46 

1.85 2.89 1.14 0.39 0.40 

6.78 1.08 7.70 0.71 0.75 

7.43 2.89 2.05 0.71 0.66 

8.09 1.21 1.17 0.97 0.74 

8.45 1.55 1.36 0.88 0.73 

11.3 1.31 1.20 0.92 0.80 

a In 1 M MCI. b Measured at 445 nm. c Estimated by KINSIM program (see 
discussion), d Calculated according to equation 18 
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DISCUSSION 

The acid dependence indicates that both an acid-independent path and an 

acid-dependent path are functioning. Such behavior is common in Ti(lll) redox 

reactions and is attributed to reduction by both Ti3+ and TiOH2+. As seen in 

Table 3, the rate of quenching by TiOH2+ is always much faster than that of Ti3+. 

This is also generally true in Ti(lll) redox chemistry and is explained in terms of 

the product. The Ti(IV) species formed is believed to be Ti02+ and so a shorter 

TiO bond such as in TiOH2+ has a lower banner to reaction. 

As the Cr(ll) product formed is stable for time scales used here, there is no 

return electron transfer occurring, despite a favorable driving force. This means 

there must be some barrier to reaction, perhaps due to the stability of Ti02+. The 

immediate product of outer sphere electron transfer would be TiO+, which must 

be too unstable. 

The quenching of the doublet excited state of Cr(NN)33+ is shown in 

Scheme I. 

(8) 

(9) 

(10) 

(11) 

(12) 

Scheme I: 

*Cr(NN)§+-»Cr(NN)§+ k° 

*Cr(NN)§+ + TiOH2+ ^ Cr(NN)§+ + TiO^^ + H+ ki 

*Cr(NN)§+ + Ti3+ + H2O ^ Cr(NN)§+ + TiO^^ + 2H+ kg 

*Cr(NN)§+ + Cr(NN)§+ Cr(NN)§+ + Cr(NN)§+ ko 

The Ti(H20)63+ is in acid equilibrium as in equation 12. 

Ti(H20)#+ = Ti(H20)50H2+ + H+ Ka 
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This leads to a rate law as in equation 13 and a kobs as in equation 14. 

-d[*Cr^NN)§^] ^ + kcr[Cr(NN)§+] + ki[TiOH2+] + k2[Ti3+])[*Cr(NN)#+] (13) 

kobs = k° + kcr[Cr(NN)§+] + kifnOH^+J + ksPl®^] (14) 

When the k^bs values are plotted against [Ti(lll)]-|- at constant acid 

concentration, the extrapolated intercepts, k®obs> are always significantly higher 

than measurements in the absence of Ti(lli) (see Table 2). This may be 

accounted for by Cr(NN)32+ quenching (equation 11). The rate constant for this 

quenching, kcr. in the case of Cr(bpy)32+ has been measured to be (5±3) x 10® 

M-1S-I.41 The concentration of Cr(bpy)32+ depends on equations 9 and 10 and 

increases as the reaction proceeds. Also, the concentrations of *Cr3+ and Cr2+ 

both depend on [TI(HI)]T as well as the relative amounts of Ti3+ and TiOH2+ 

present (i.e. they are acid dependent). 

The fraction of quenching by Ti(lll) species at constant H+ is given by 

equation 15 where kq = kiKa/[H+] + k2. 

Ki[Ti(lll)lT [Cr(NN)§1. 

k° + kcr[Cr(NN)n + k,rn(lll)]T [*Cr(NN)^]. 

The remaining fraction that goes via reactions 8 and 11 is given by equation 16. 

k° + kcr[Cr(NN)§1 [*Cr(NN)^]. - [Cr(NN)§% 

k° + kcr[Cr(NN)§+] + kq[Ti(lll)]T [*Cr(NN)§+]. 
(16) 
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By taking the ratio of these two fractions and rearranging, an expression for 

kcr[Cr(NN)32+] is obtained as in equation 17. 

kc,lCr(NN)M . 
[Cr(NN)iT. 

However, the concentration of Cr(NN)32+ is not constant as the reaction 

progresses. The [Cr(NN)32+] in these equations (15-17) is the amount that, if it 

were constant throughout the reaction, would account for the lowering of the 

quantum yield of Cr(NN)32+ due to reaction 11. 

For the case involving Cr(bpy)33+ calculations were carried out to correct 

the k°obs value for quenching by Cr(ll). The program KINSIM^Z was used to 

estimate the infinity value for [Cr(bpy)32+] at each Ti(lll) concentration and the 

excited state initial concentration was assumed to be 10% of the ground state 

concentration of Cr(bpy)33+. Thus, using equation 17, a value of [Cr(bpy)32+] 

was calculated for each Ti(lll) concentration at constant [H+]. 

The term kcr[Cr(NN)32+] can be subtracted from kobs. giving a corrected 

value, kobs'. so that a plot of kobs' vs. [Ti(lll)]T is linear with an intercept of k°. The 

values calculated for [Cr(bpy)33+]_, kcr[Cr(bpy)33+] and kobs' are given in Table 

5 and a plot of kobs' vs. [Ti(lll)]T is shown in Figure 6. The corrected intercept os 

2.17 X 104 s-1 is closer to but still somewhat higher than the expected value of 

1.5 X 104 s"i at this Cr(NN)33+ ground state concentration. If the 

initial excited state concentration is greater than 10% of the ground state 

concentration, as has been observed at concentrations such as these, then the 

contribution of Cr(bpy3)2+ quenching would be larger (according to equation 
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Figure 6. Quenching of *Cr(bpy)33+by Ti(lll) corrected for quenching by 

Cr(bpy)32+ 
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Table 5. Values calculated from KINSIM® In correction for Cr(bpy)32+ 

quenching^ 

[Ti(lll)]T/ [Cr2+]=/ kcr{Cr2+] / kobs' / 

10-3 M 10-6 M 10-3 S-1 10-4 s-1 

1.0 1.93 4.6 4.1 

2.0 2.49 6.2 6.2 

3.1 2.81 7.0 8.2 

4.1 3.00 7.0 9.8 

5.1 3.11 7.8 12 

6.1 3.20 8.1 14 

7.2 3.29 7.5 17 

8.2 3.34 7.8 19 

9.2 . 3.37 8.7 20 

10.2 3.41 8.6 22 

3 Kinetic simulation program, b [*Cr(bpy)33+] assumed to be 3.8 x 10-6 M 
(see text): [H+] = 1 M. 

17). Thus, the larger intercept can be reasonably attributed to Cr(bpy)32+ 

quenching competing with Ti(lll) quenching. 

Using this value of l<ci{Cr(ll)] in equation 18, an estimated value for the 

quantum yield of Cr(ll) may be calculated at different Ti(lll) concentrations. 
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_ (18) 
k° + k,rTi(lll)]T + koJCr(NN)i*] 

The quantum yields obtained from this calculation are listed in Table 4 and 

agree well with the observed quantum yield. This indicates the Cr(ll) quenching 

is significant and suggests the excited state extinction coefficient is accurate. 

The value of 3000 ± 200 M-icm-i for the excited state extinction 

coefficient at 445 nm agrees with previous reports.43 A value of 4800 M-"'cm-"' 

was previously reported by this lab.4i However, that experiment required an 

extrapolation back to time zero on the kinetic trace to estimate the concentration 

of *Ru(bpy)32+. In this work Co(NH3)5Br2+ was added as a quencher so that 

Ru(bpy)33+ was fomied with a quantum yield (estimated from kq and the k° in 

DgO) of 0.92. Since this Ru(bpy)33+ is relatively stable under the conditions 

used here, its absorbance at 445 nm could be monitored directly, giving a more 

reliable value for the initial excited state concentration. 

Problems with this experiment included bleaching of the ground state 

Ru(bpy)32+ and/or small signals in the Cr(bpy)33+ experiment. A more intense, 

lower wavelength dye would improve the accuracy of this experiment. At lower 

wavelengths, Ru(bpy)32+ absorbs less and Cr(bpy)33+ absorbs more. Thus, 

higher concentrations of Ru(bpy)32+ could be used allowing a higher laser 

power to be applied without bleaching the ground state concentration. This 

higher laser power would allow larger, more reliable signals in the Cr(bpy)33+ 

experiment. 

The reduction potential for Ti(IV/lll) has been measured in 1 M HCI as -16 

mV and equation 19 applies.^ 
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E = -0.016-0.059 log(—ML) (19) 

Table 6. Data for linear free energy relationship 

NN *E°a/v AEib/V AE2C/V log ki log k2 

bpy 1.44 1.54 1.37 8.78 7.27 

4,4'-(CH3)2bpy 1.25 1.35 1.18 8.00 6.41 

phen 1.42 1.52 1.35 8.66 7.20 

5-Clphen 1.53 1.63 1.46 8.99 7.57 

5-(CH3)phen 1.39 1.49 1.32 8.67 7.16 

5,6-(CH3)2phen 1.40d 1.50 1.33 8.47 7.08 

4,7-(CH3)2phen 1.23 1.33 1.16 7.91 6.45 

a Ref. 29. b E°-noH = -0.10 V. c EV, = 0.07 V. d Ref. 40. 

Utilizing expressions for hydrolysis constants of Ti(IV) (KHIKH2 ~ 25 M2), the 

potential for the reduction of Ti4+ (equation 20) is estimated to be -0.07 V. 

Ti^ + e- -> Ti^ (20) 

TiOH^+fe->TiOH^+ (21) 

Similarly, the potential for the reduction of TiOH3+ (equation 21) is estimated to 

be ~-0.10 V. Table 6 gives values for the driving force of the quenching of each 

of the *Cr(NN)33+ complexes by TiOH2+ and Ti3+. Figure 7 shows that there is a 

linear dependence on driving force for both. The slopes of these lines are 4.0 

for Ti3+ and 3.7 for TiOH2+. The large driving forces of these reactions do not 
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allow application of the Marcus cross relation to estimate the self-exchange rate 

constants for Ti4+/3+ and TiOH3+/2+. 
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Figure 7. Variation with driving force of second-order rate constants for 

quenching of *Cr(NN)33+ by TiOH2+ (triangles) and Ti3+ (circles) 
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APPENDIX 

Table Al. Ground state quenching of *Cr(bpy)33+3 

rCr(bpv)33+l /10-5 M kobs/103s-1 

2.08 15.22 

4.15 14.79 
6.23 15.36 
8.31 15.49 

10.38 16.02 
12.46 16.56 

a In 1 M HCI. 

Table A2. Ground state quenching of *Cr(4,4-(CH3)2bpy)33+a 

[Cr(4,4-(CH3)2bpy)33+] /10*5 M kob«/103s-l 

1.70 5.32 
3.40 5.54 
5.10 5.92 
6.80 6.09 
8.50 6.27 

10.20 6.60 

a In 1 M HCI. 
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Table A3. Ground state quenching of *Cr(phen)33+a 

[Cr(phen)33+] /10-5 M kobs/103s-l 

1.50 4.10 
2.90 4.50 
4.40 4.25 
5.90 4.95 
7.30 5.60 
8.80 5.25 

10.30 5.80 

a In 1 M HCI. 

Table A4. Ground state quenching of *Cr(5-Clphen)33+a 

[Cr(5-Clphen)33+] / lO'S M kobs/103 s-1 

1.4 8.0 

2.9 8.9 
4.3 10.6 
5.7 12.0 
7.2 12.0 
8.6 12.6 
10.0 13.1 

a In 1 M HCI. 



www.manaraa.com

35 

Table A5. Ground state quenching of *Cr(5-(CH3)phen)33+a 

[Cr(5-(CH3)phen)33+]/10-5M kobs/IO^ S'l 

1.7 4.84 
3.3 6.27 
5.0 7.36 
6.6 8.84 

8.3 8.84 
9.9 13.2 

a In 1 M HCI. 

Table A6. Ground state quenching of *Cr(5,6-(CH3)2Phen)33+a 

[Cr(5,6-(CH3)2phen)33+] /10-5 M kobs/103s-1 

1.45 4.04 
2.90 5.32 
4.35 6.20 
5.80 7.04 
7.26 8.24 
8.70 8.68 

a In 1 M HCI. 
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Table A7. Ground state quenching of *Cr(4,7-CH3)2Phen)33+a 

[Cr(4,7-(CH3)2Phen)33+] /10*5 M kohs/IOSs-i 

1.59 2.99 
3.18 4.61 
4.77 4.78 
6.36 6.38 
7.95 6.38 
9.54 7.82 

a In 1 M HCI. 

Table AS. Quenching of *Cr(bpy)33+ in 1 M HCia 

m(lll)l/10-3M kobs/104 8-1 

1.0 4.52 
2.0 6.86 
3.1 8.91 
4.1 10.48 
5.1 12.64 
6.1 14.66 
7.2 17.26 
8.2 19.35 
9.2 20.65 

10.2 22.69 

a [Cr(bpy)33+] = 3.83 x 10-5 M. 
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Table A9. Quenching of *Cr(4,4'-(CH3)bpy)33+ in 1 M HCia 

mOIDl /10-3 M W/104 s-1 

1.2 1.27 

2.4 1.70 
3.6 2.16 

4.8 2.61 

6.0 2.94 
7.2 3.37 
8.4 3.70 
9.6 4.16 

10.8 4.24 

a[Cr(4.4'-(CH3)2bpy)33+] = 3.39 X 10-5 M. 

Table A10. Quenching of *Cr(phen)33+ in 1 M HCia 

m(lll)]/10-3M kobs/104 s-1 

1.2 3.69 
2.4 6.02 
3.6 8.91 
4.8 11.28 
6.0 13.64 
7.2 16.48 
8.4 18.99 

a [Cr(phen)33+] = 3.0 x 10*5 M. 
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Table All. Quenching of *Cr(5-Clphen)33+ in 1 M HCia 

rn(iii)]/io-3M kobs/104 s-1 

0.54 4.00 
0.72 4.72 
1.1 6.24 
2.2 10.5 
3.2 14.2 
4.3 18.3 
5.4 23.6 
6.5 26.6 

a [Cr(5-Clphen)33+] = 2.87 X 10-5 M. 

Table A12. Quenching of *Cr(5-(CH3)phen)33+ in 1 M HCI® 

rn(iii)i/io-3M kobs/104 s-1 

0.61 2.04 
1.21 3.38 
2.42 5.32 
3.64 7.62 
4.85 9.34 
6.06 11.61 
7.28 12.77 
8.49 15.14 

a [Cr(5-(CH3)phen)33+] = 3.31 x 10-5 M. 
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Table Al3. Quenching of *Cr(5,6-(CH3)2phen)33+ in 1 M HCia 

rn(iii)i/io-3M kohs/10^s-i 

0.88 1.80 
1.77 2.80 
2.66 3.93 
4.00 5.23 

5.78 7.13 
7.56 9.13 
9.34 11.57 

10.66 12.65 

a [Cr(5,6-(CH3)2phen)33+] = 2.90 X 10-5 M. 

Table A14. Quenching of *Cr(4,7-(CH3)2phen)33+ in 1 M HCia 

rn(iii)]/io-3M kobs/10^ s-"» 

0.88 0.746 
2.21 1.23 
3.54 1.57 
4.87 2.01 
6.19 2.47 
7.53 2.74 
8.85 3.19 

10.62 3.83 

a lCr(4,7-(CH3)2ph8n)33+] = 3.18 x 10*5 M. 
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Table Al5. Acid dependence of quenching of *Cr(bpy)33+3 

[H+]-l / M-1 
mil# 'lo'Lmol-'s-i 

1.02 2.03 
2.03 2.54 
3.44 2.76 
5.15 3.33 
6.99 3.38 
8.26 4.20 
9.17 4.25 

10.4 4.39 

a Ionic strength 1 M with LiCI; [71(111)]% = 2.05 x 10-3 M; [Cr(bpy)33+] = 3.83 x 
10-5 M. 

Table A16. Acid dependence of quenching of *Cr(4,4'-(CH3)2bpy)33+a 

[H+]-i / M-1 

millÏT 
1.04 2.85 
2.00 3.71 
3.33 4.29 
4.00 4.31 
5.00 4.76 
6.67 5.26 
7.87 5.94 
8.77 5.82 
10.0 7.67 

a Ionic strength 1 M with LiCI; [71(111)]% = 3.61 x 10-3 m; [Cr(bpy)33+] = 3.39 x 
10-5 M. 
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Table Al7. Acid dependence of quenching of *Cr(phen)33+a 

[H+J-1 / M-1 

millÏT 
1.01 1.72 

2.00 1.95 
3.34 2.27 
4.02 2.43 
5.00 2.65 
6.68 2.92 
7.85 3.26 
8.68 3.28 
9.89 3.46 

a Ionic strength 1 M with LiCI; [Ti(lll)]T = 2.54 x 10-3 M; [Cr(phen)33+] = 3.14 x 
10-5 M. 

Table A18. Acid Dependence of quenching of *Cr(5-Clphen)33+a 

[H+]-i / M-1 

1.01 4.14 
1.25 4.18 
1.67 4.41 
3.34 5.41 
4.99 6.10 
6.69 6.52 
7.98 7.07 
9.00 7.33 
9.91 7.63 

a Ionic strength 1 M with LiCI; [Ti(lll)] = 2.01 x 10 3 M; [Cr(5-
Clphen)33+] = 3.73 x 10-5. 
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Table Al9. Acid dependence of quenching of *Cr(5-(CH3)phen)33+a 

[H+]-l / M-1 

1.02 1.66 
2.02 1.89 
3.32 2.13 
4.00 2.20 
5.03 2.48 
6.62 2.90 
7.94 3.09 
8.77 3.23 

10.0 3.39 

a Ionic strength 1 M with LiCI; [Ti(lll)] = 2.90 x 10-3 M; [Cr(5-(CH3)phen)33+] = 
3.49 X 10-5 M. 

Table A20. Acid dependence of quenching of Cr(5,6-(CH3)2phen)33+a 

[H+]-i/M-i 

mil# '^0' 

1.09 1.27 
2.00 1.44 
3.36 1.68 
5.00 1.85 
6.67 2.05 
7.87 2.22 
8.85 2.31 

10.1 2.40 

a Ionic strength 1 M with LiCI; [Ti(lil)] 
(CH3)2phen)33+] = 2.9 x 10*5 M. 

= 8.09 X 10-3 M; [Cr(5,6-



www.manaraa.com

43 

Table A21. Acid dependence of quenching of Cr(4,7-(CH3)2Phen)33+a 

[H+]-l / M-1 

1.09 3.12 
2.02 3.52 
3.33 4.32 
5.00 4.67 
6.67 5.21 
7.78 5.55 
8.77 5.89 

10.0 6.05 

a Ionic strength 1 M with LiCI; [Ti(lll)] = 8.09 x 10*3 M; [Cr(4.7-
(CH3)2Phen)33+] = 3.18 x 10-5 M. 
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PART II ALKYL RADICAL COLLIGATION AND RELEASE 

BY A CHROMIUM MACROCYCLE 
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INTRODUCTION 

Efforts to learn more about the metal-carbon bonds in transition-metal 

complexes have included studies of the hemolysis of organometallic 

complexes in aqueous solution (equation 1 ). 

UnMR"+= UM"++ R- (1) 

In the case of complexes of Cr(lll) the rates of hemolysis have been 

measured by shutting off the reverse colligation reaction. This was done by 

adding a scavenger to remove either or both of the products of the hemolysis, 

thereby pulling the reaction to completion. Hemolysis studies have been 

carried out for the series of complexes (H20)5CrR2+1-3 and 

([15]aneN4)CrR2+.4 From the temperature dependence studies of these 

hemolysis reactions, the activation parameters were determined and the 

activation enthalpies were taken as an approximate measure of the 

chromium-carbon bond dissociation enthalpy. The rates of hemolysis are 

strongly dependent en steric factors and the estimates of the bend strengths 

decline regularly with degree of substitution. The highly endothermic 

hemolysis occurs by chromium-carbon bond scission unassisted to any 

appreciable extent by compensating bend-making reactions. 

The reverse reaction (colligation) was studied pulse radiolytically for a 

series of aliphatic radicals with Cr(H20)62+.5 A simpler laser-flash-photolysis 

method was later developed that generated radicals by photehomolysis of 

RCe([14]aneN4)2+ complexes.® This method was applied to the study of 

colligation reactions of carbon-centered radicals with Ce(ll) macrocyclic 

complexes^ and Ni([14]aneN4)2+ 8 in addition to the Cr(H20)6^+ studies. 
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Organochromium complexes containing the macrocyclic ligand 1,4,8,12-

tetraazacyclopentadecane ([ISjaneN^) were first prepared^ by reaction of 

Cr([15]aneN4)2+ with RX. The rate of colligation of 5-hexenyl radical and this 

complex was derived by the method of Kochi and Powers^^to be (0.9 ± 0.2) x 

107 L moMs-\9 Colligation rates for ([15]aneN4)CrCH20H2+ of (1.2 ± 0.2) x 

10® L mo|lsl and for ([15]aneN4)CrC(CH3)20H2+ of (4.9 ± 0.5) x 10^ L mol-

is-i were measured by pulse radiolysis.^^ 

This study fills some of the gaps of knowledge in the hemolysis and 

colligation reactions of ([15]aneN4)CrR2+ complexes. The simple carbon-

centered radicals, many of which are not readily available in pulse radiolysis 

studies are generated here by photohomolysis of RCo(dmgH)2 complexes 

(equation 2). 

RCo(dmgH)2 + hv ^ Co(dmgH)2 + R (2) 

R* + R* —> R2 or R(-H) + RH (3) 

R + Cr([15]aneN4)2+ -> ([15]aneN4)CrR2+ (4) 

R + MV+" products (5) 

In the absence of any other reagents the radicals react according to equation 

3 in combination and/or in disproportionation reactions at diffusion controlled 

rates. 12 with Cr([15]aneN4)2+ present the radical is captured by the metal ion 

forming an organochromium complex (equation 4). This may be considered 

formally as an electron transfer process with the organic radical oxidizing the 

chromium(ll). Because of the low molar absorptivities of the organo-
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chromium complexes in the visible region, a kinetic probe, methyl viologen 

radical cation (equation 5), was used to monitor the rate of colligation. In this 

manner a large number of colligation rates of carbon-centered radicals with 

Cr([15]aneN4)2+ have been determined. 

Also, several of those complexes of Cr([15]aneN4)2+ that had previously 

been observed only by pulse radiolysis have been prepared by the modified 

Fenton's reagent method, s This method has proven to be useful in the 

preparation of (H20)5CrR2+ complexes.i In this case Cr([15]aneN4)2+ 

reduces H2O2 in (equation 6} in a manner analogous to that of Fe(ll),i6 

Ti(lll),i7 Cr2+,18 and V02+.17 The hydroxyl radical formed extracts a 

hydrogen atom from an alcohol or ether, yielding a carbon-centered radical 

(equation 7) which may be captured by Cr([15]aneN4)2+. 

Cr([15]aneN4)^+ + H2O2 ^ ([15]aneN4)CrOH2+ + OH (6) 

•OH + HCR^ R^OR ^ CR^ R^OH + H2O (7) 

From these two approaches and with data available in the literature 

equilibrium constants and values for AG°298 may be calculated for reaction 1. 
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EXPERIMENTAL 

Materials 

All water used In this study was In-house distilled, delonized water 

passed through a Millipore-Q purification system. All chemicals were used 

as received unless noted below. The argon (99.99% pure, Air Products 

Corp.) used for purging was passed through chromous towers to remove any 

trace oxygen. [Co(NH3)5Br]Br2^^ and [Co(NH3)5CI](CI04)2^° were prepared 

by literature procedures. The [Co(NH3)5Br]Br2 was converted to the more 

soluble perchlorate salt by recrystallizing three times from dilute HCIO4 in the 

presence of a large excess of LiCIO^. Methyl viologen dichloride hydrate 

(Aldrich) was recrystallized twice from methanol and stock solutions were 

protected from light and O2. Solutions of MV+' were prepared by reduction 

over Zn/Hg amalgam ~20 seconds and were stored (<2 hours) in a gas-tight 

syringe. 

Many of the organocobaloximes having pyridine in the trans position 

were available from previous studies.21,22 These were recrystallized from 

CH3OH/H2O and dissolved in 0.01 M HCIO4. The more soluble aqua 

complexes of benzyl- and neopentylcobaloximes were prepared by 

hydroxide-promoted disproportionatlon.23 in the case of 

neopentylcobaloxime 80 ml of methanol was degassed In a 250-ml round-

bottomed flask. To this was added 6.38 g (0,055 mol) dmgH2 

(dimethylglyoxime) and 6.53 g (0.027 mol) CoCl2*6H20. The flask was 

cooled in an ice-salt bath and 5 ml (0.04 mol) neopentyl bromide was added. 

Immediately following this, 3.3 g NaOH dissolved in 11 ml H2O was very 

slowly added. The reaction mixture was allowed to stir ca. 1.5 hr. warming 
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slowly to room temperature. Approximately 20 ml H2O was added and the 

product solution was filtered to remove a black tar-like precipitate. Methanol 

was removed by rotary evaporation and product was collected by filtration. 

The reddish-brown product was recrystallized twice from CH3OH/H2O to give 

red crystals. 

The complexes CH3Co([14]aneN4)2+, C2H5Co([14]aneN4)2+, 

BrCH2Co([14]aneN4)2+ and CH30CH2Co([14laneN4)2+ were available from 

previous studies.23 

Aqueous solutions of Cr(ll) were prepared as follows.^s Several pellets 

(ca. 2 g) of chromium metal (99.99+%, Alfa) were placed in a 24/40 S T. 6" 

test tube. The tube was degassed with chromous-scrubbed argon and 25 ml 

of degassed 6 M HCI was added. The reaction started quickly and was 

accelerated by gentle heating. After ca. 2 hours most of the chromium was 

dissolved. The volume was reduced to ~5 ml by heating with a Bunsen 

burner. At this point a green precipitate formed that turned dark blue on 

cooling. The solid was washed with acetone until the wash was colorless. 

Any white solid present was dissolved by adding 2-3 ml of water to one of the 

last acetone washes. The blue solid was dissolved in degassed water, 

transferred to storage vials and stored at -5 °C under argon. 

To prepare (H20)2Cr([15]aneN4)2+ a solution of 1,4,8,12-

tetraazacyclopentadecane (Strem) was thoroughly degassed and a slight 

deficiency (~95%) of Cr(ll) was added.9 The resulting brown solution turned 

purple over several minutes with stirring. The solution was stirred for 10-15 

minutes longer to dissolve any precipitate that was formed. In more 

concentrated solutions the precipitate did not dissolve completely. To avoid 
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this, high quality chromous (not more than 3 weeks old) and dilute 

(H20)2Cr([15]aneN4)2+ solutions were used. In the presence of acid no 

purple color appears and if acid is added to a solution of the Cr(ll) complex, 

the purple color rapidly fades. 

In a typical organochromium preparation a solution ~0.05 M 

(H20)2Cr([15]aneN4)2+ was prepared. To this was added 0.5 M degassed 

CH3OH or C2H5OH (or the solution was saturated with CH3OCH3), followed 

by slightly less than a stoichiometric amount of H2O2. The resulting brown 

solution was acidified to pH 1 and placed on a degassed and ice-water 

cooled Sephedex C-25 20 cm column that had been washed with 0.15 M 

HCIO4. RCr([15]aneN4)2+ was eluted with 0.15 M HCIO4. 

Analyses 

Chromium analyses were carried out on the organochromium 

complexes to determine extinction coefficients. However, the results were 

initially irreproducible. To improve reproducibility, the macrocyclic ligand 

was decomposed by heating very strongly in concentrated HCIO4 before 

analyzing for chromate at 372 nm (4830 L moMcm'^) in basic peroxide.26 

Cobalt(ll) yields were determined at 623 nm (1842 L moMcm i) by 

addition of NH4SCN in 50% acetone.27 

Acetaldehyde was determined using a Hewlett Packard 5790Â gas 

chromatograph with an OV101 column (Alltech) at 30 ®C. Calibration curves 

were constructed using standard solutions cooled in ice to prevent loss of 

volatile CH3CHO. A blank experiment was carried out to show that no 

acetaldehyde is formed in the preparation of ([15]aneN4)CrCH(CH3)OH2+. A 

freshly prepared solution of organochromium was injected and acetaldehyde 
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was observed to be present, presumably produced at the injection port by the 

decomposition of organochromium complex. However, more importantly, no 

acetaldehyde was found in the gas phase above the organochromium 

solution. 

Kinetics 

Rates of Decomposition of ([16]aneN4)Cr(H20)CH(OH)CH32+ were 

measured using a Gary 219 spectrophotometer equipped with a Forma 

Scientific 2800 temperature controlled bath. Loss of the complex was 

monitored at 383 and 320 nm. The reaction temperature, [H+] and ionic 

strength were precisely controlled. 

Colligation rates were measured using a laser flash photolysis system 

like that described in part 1 of this dissertation. The excitation dyes (Exciton) 

used were Coumarin-460 (1.5 x 10 ^ M in CH3OH) and LD 490 (1 x 10'^ M in 

CH3OH containing 1% Ammonyx LO). Temperature control was maintained 

using an RC6 Lauda temperature control bath with circulation through the 

walls of the cell holder. The loss in absorbance due to MV+' was monitored 

at 600 nm (13,700 L moMcm-i).28 The data was transferred to an interfaced 

Apple 11+ microcomputer for storage and processing using a least-squares, 

first-order kinetics fitting program. The first-order treatment of data is really 

an approximation as there is a second-order contribution to the observed 

rate. The validity of this approximation is explained below. 

A radical is formed in the laser flash by reaction 2. In the absence of 

Cr(ll) R» may react with another R»(equation 3) or with MV+* (equation 5). 

The observed rate constant is given by equation 8a when MV+* is in pseudo-

first-order excess. The literature value for k^ for •CH3 is 1.24 x 109 L 
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moMs'i 12 and the value for k^v for methyl radical measured under these 

conditions is 1.5 x 10^ L moMs-1. 

The approximation lies in assuming that [R*] is a constant or average 

value, resulting in equation 8b. This is a good approximation because the 

contribution of the first term is very small. However, it is necessary to make 

some correction for radical self-reaction, as the first term in equations 8a and 

8b is not completely negligible. For example, typical conditions are 3 

•CH3 produced in the flash and 40 ^iM MV+*. This means that the first term 

contributes < 5% to the observed rate constant. The value of [R*]ave was 

taken as the average of the initial and final values. It was calculated from 

absorbance changes due to loss of MV+' according to equation 9. This 

equation is based on the fact that the total radical produced is equal to the 

radical that reacts with MV+* (A[MV+*]) divided by the fraction that reacts with 

MV+* (f^v) given by equation 10. In the case where Cr(ll) is also present and 

organochromium is formed (equation 4), a third term is included (equation 

11) and the radical self-reaction becomes even less significant. 

kobs = kd[Rf + kMv[MV+] (8a) 

kobs = 2k(j[R*]ave + I^MvI^V'*" ] (8b) 

(9) 
^ kMv[MV+] 

kMvfMV^] . kMv[MVn 

2kd[R.]ave + kMv[MV+] 
(10) 
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kobs = 2k<j[R']ave +kMv[MV'''] + kcoi[Cr([15]anGN4)^''"] (1 

The validity of this approximation was also demonstrated by KINSIM.^^ 

The concentration of MV+* was calculated by the program as a function of 

time, using the rate constants for methyl radical and the mechanisms 

corresponding to equations 8a and 8b. First order analysis of the simulated 

data using equation 8a agreed with the approximate method represented by 

equation 8b. 
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RESULTS 

The modified Fenton's reagent method was used to prepare three 

organoohromium complexes: ([15]aneN4)Cr(H20)R2+ with R = CH(0H)CH3, 

CH2OH and CH2OCH3. Attempts to prepare ([15]aneN4)CrC(CH3)20H2+ 

were unsuccessful. The extinction coefficients for these complexes were 

determined and are given in Table 1. 

Table 1. UV-Visible spectra of RCr([15]aneN4){H20)2+ complexes 

R 

A, / nm (e / L mol ^cm-i) 

R Xi (ei) ^2 (£2) ^3 (£3) 

CH2OH 270(10301100) 377(200±10) 450(55±3) 

CH(0H)CH3 320(sh)(650±60) 383(203±15) 458(50±8) 

CH2OCH3 377(220±25) 450(68±15) 

Decomposition reactions were examined for RCrL(H20)2+, for R = 

CH2OH, CH2OCH3 and CH(CH3)0H. The first two of these are quite stable, 

showing negligible changes in their spectra over more than six hours in 

acidic solution under argon. The complex with R = CH(CH3)0H undergoes a 

first-order decomposition reaction in the presence of a scavenger such as 

CO(NH3)5C|2+. This cobalt complex was chosen to establish whether the 

decomposition occurs by homolysis, equation 12, because Co(NH3)5C|2+ is 

known to react with •CH(Œ[3)0H (equation 13, k = 3.0 x lO^L moMs-i).30 

Also, the chromium(ll) macrocyclic complex is expected to rapidly reduce 
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CO(NH3)5C|2+ (equation 14), given that Cr(H20)6^+ does so (k = 2.6 x 10® L 

mol-is-i).3i 

CH3CH(0H)CrL(H20)2+ + H2O = (H20)2CrL2+ + •CH(CH3)0H (12) 

•CH(CH3)0H + Co(NH3)5C|2+ + 5H+ -> CH3CHO + CI" + Co2+ + 5NHÎ (13) 

(H20)2CrL2+ + Co(NH3)5C|2+ + 5H+ ^ (H20)CrL(Ci)2+ + Co2+ + 5NHJ (14) 

The kinetics were studied in 0.10 M perchloric acid, ionic strength being 

maintained at 1.0 M with sodium perchlorate. The reactant concentration was 

typically 2-3 mM, and [Co(NH3)5C|2+] was varied in the range 6-16 mM. The 

rate constant, k = (1.60 ±0.15) x 10 ^ s ^ at 25.0 °C, was independent of 

cobalt concentration as expected from the sequence in equations 12-14, and 

independent of [H+], 0.10-1.0 M. If the cobalt scavenger is absent, an 

absorbance decrease occurs at about the same rate, but the data do not fit as 

cleanly to first-order kinetics. 

The rate constants were evaluated as a function of temperature with 

values of k/10-4 s*"" (T / °C) as follows: 0.61 (20.2), 1.55(24.8), 2.25(29.7), 

5.79(34.5), 9.80(39.5). These values were not analyzed according to the 

equation from activated complex theory, because the rate constant is, as 

presented in the Discussion, a composite of two and likely three parallel 

reactions. 

The yields of acetaldehyde and Co2+ were deterrhined on solutions in 

which the reaction was allowed to go to completion. The value of [CHaCHOJoo 
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when 8.8 mM Co(NH3)5C|2+ was present in a solution of 3.5 mM 

organochromium complex at 0.16 M perchloric acid. The same solutions 

gave [Co2+]oo/ [RCrL(H20)2+]o = 0.56 ± 0.04. This ratio, unlike the kinetic data, 

depends also on cobalt and acid concentrations. Yields of Co2+ increase at 

higher Co(NH3)5C|2+ concentrations and lower acid concentrations. In 0.058 

M HCIO4 with 10.1 mM Co(NH3)5C|2+ present the [Co2+]«/ [RCrL(H20)2+]o = 

1.76. Also, in the absence of cobalt, H2 is detected as a product by the test 

with palladium chloride.33 However,with excess cobalt present no H2 is 

detected. 

Reaction of R« with MV+' 

The rates of reaction of the carbon-centered radicals listed in Table 11-2 

with MV+* were studied at 25 °C. Methyl viologen radical cation (0.1-1) x 10-4 

M is stable with respect to thermal reaction in the presence of freshly purified 

RCo(dmgH)2 (< 2 x 10-4). Under typical reaction conditions ~ 3 |j,M radical 

was produced in the 490 nm laser flash depending on the energy of the flash. 

At 600 nm the loss of MV+* was monitored due to reaction 3, varying the 

concentration of MV+*. A plot of k^orr (equation 15) vs. [MV+*] for two radicals 

is given in Figure 1. The intercept should be zero because the small k^ term 

was subtracted out at each [MV+*]. The observed and corrected first order rate 

constants are listed in Tables A2-A14; they agree with previous 

determinations, where available.6 

kcorr — kobs " 2k<j[R*]ave = k^vlMV"*" ] (15) 
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Figure 1. The observed pseudo-first-order rate constants, corrected for 

radical self-reactions - vary linearly with MV+' for the reactions of 

CHaBr (squares) and CH2CH(CH3)2 radicals 
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Reaction of R» with Crai51aneNi,^2+ 

In this work it was imperative that the organocobaloxime was freshly 

purified. Any trace amount of inorganic cobalt resulted in the formation of Hg, 

identified by the PdCl2 test.32 This was presumably formed in a reaction 

analogous to the evolution of H2 in acidic solutions of Cr(H20)6^'^ catalyzed 

by cobalt(ll).33 

In the presence of Cr([15]aneN4)2+ the loss in absorbance at 600 nm is 

faster and not as large for a given radical concentration due to the formation 

of organochromium complex (reaction 4). A value of k^orr was calculated for 

each [Cr([15]aneN4)2+] using equation 16. 

kcorr — kobs " 2kd[R']ave " ^mvIMV'*'] = kcoi[Cr([1 SjaneN^)^^] (16) 

Thus, a plot of kcorr vs. [Cr([15]aneN4)2+] is linear with an intercept of zero. 

Such a plot is shown for several radicals in Figure 2. The observed rate 

constants and the values calculated for kcorr are listed in Tables A15-A27. 

The second order rate constants are listed for all of the radicals studied in 

Table 2. 

Another radical source that may used in these experiments is the series 

RCo([14]aneN4)2+, Several of these were used to measure kgoi as a check 

on the purity and reliability of the organocobaloximes which allow a wider 

variety of R groups. These values are also listed in Table 2 with kobs and 

kcorr listed in Tables A28-A31. 
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Figure 2. The observed pseudo-first-order rate constants, corrected for 

radical self-reactions and the reaction of R» with MV+*- vary 

linearly with [(H20)2CrL2+] for the reactions of C6H5CH2' 

(diamonds), I-C4H9' (squares) and •CH(CH3)C2H5 (circles) 
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Table 2. Summary of the rate constants (L mol-i S'^) for the reactions of 

carbon-centered radicals with MV+* and Cr([15]aneN4)2+ a 

Radical kMV/109 kcol /10^ 

CH3 1.5(±0.4) 16(±1) 

19(±2)b 

CH2CH3 1.0{±0.1) 10(±1) 

9.5(±0.2)b 

CH2C2H5 1.0(±0.1) 8.5(±0.4) 

CH(CH3)2 1.2(±0.1) 6.1 (±0.3) 

CH2C3H7 1.2(±0.1) 8.2(±0.5) 

CH(CH3)C2H5 1.1 (±0.1) 3.9(±0.4) 

CH2CH(CH3)2 0.92(±0.09) 7.3(±0.2) 

C-C5H9 0.91 (±0.09) 7.1 (±0.4) 

CH2C(CH3)3 0.76(±0.08) 6.3(±0.2) 

CH2Ph 1.2(±0.1) 19(±1) 

CH20CH3 1.1 (±0.1) 16(±1) 

14(±1)b 

CH2CI 1.1 (±0.2) 9.3(±0.7) 

CH2Br 1.5(±0.1) 13(±1) 

16(±1)b 

aConditions: 25±1 °C, [R«] = 1-4 ̂ iM, [MV+*] = (0.1-0.8) x 10-4 M. 
busing RCo([14]aneN4)2+ as the radical source. 
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DISCUSSION 

Homolysls reactions 

The modified Fenton reaction between Cr(H20)6^+ and H2O2 in the 

presence of a suitable aliphatic substrate RH has proved to be a 

successful method for the preparation of (H20)5CrR2+ complexes. "'•5.34 

The same method was used here to prepare macrocyclic analogues with R 

= CH2OH, CH(CH3)0H and CH2OCH3, but it failed for R = C(CH3)20H. 

We suggest this is due to the hemolysis of 

(CH3)2C(0H)Cr([15]aneN4)H202+ being too rapid, which is not 

unreasonable in view of the fact that the pentaaqua analogue 

decomposes with khom = 0.13 s-i (T1/2 = 5.5 s) at 25 °C.i 

That the complex RCrL(H20)2+ with R = CH2OH does not 

decompose by hemolysis is not unexpected, since the aqua complex 

reacts only slowly. That it and the complex with R = CH2OCH3 do not 

decompose by acidolysis to yield (H20)2CrL3+ and CH3OH or (CH3)20, 

respectively, contrasts with the behavior of the (H20)5CrR2+ analogues, 

which do so readily (R = CH2OH) or slowly (R = CH20CH3).1'35 This 

behavior is precendented, however, in that the 1-propyl and 2-propyl 

macrocyclic complexes are completely stable toward acidolysis under 

conditions where their pentaaqua counterparts readily react.36 This 

contrast in reactivity is particularly striking, because the N4 macrocycle, a 

good electron donating ligand, might be expected to increase the rate of 

eiectrophilic attack by virture of its inductive effect. This may be further 

indication that eiectrophilic attack by water arises from the internal attack of 

cis-coordinated water in the (H20)5CrR2+ series of complexes, which 
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cannot happen in the macrocycle. Earlier studies of the edta and 

nitrilotriacetate complexes'" 1-37 gave rates that were similar, for the H2O 

pathway, to those found in the pentaaqua series. These authors'" •< also 

found that CH3CH(0H)CrL(H20)2+ does not undergo acidolysis with H2O 

or H3O+ They argued, however, that the similarity of rates for (H20)5, 

edta, and nta complexes signaled the same mechanism for the H2O path -

attack of an external, noncoordinated water molecule. Evidently the basis 

for this is that the edta complex, which lacks a cis coordinated water, reacts 

similarly to the others. We suggest that the really striking feature is the 

failure of the [15]aneN4 complexes to react at all. Perhaps the edta 

complex can, by hydrogen bonding, utilize a water molecule in the second 

coordination sphere.'''• >37 

The extreme slowness of electophilic attack of H3O+ on the 

macrocycles might therefore indicate the difficulty the small H3O+ 

electrophile experiences in approaching the a-carbon atom by virtue of 

repulsion from the ligand. Larger electrophiles (Hg2+, Br2,12) evidently do 

not show this effect, since these displacement reactions occur rapidly and 

readily.36,38 

On the basis of equations 12,18 and 19 the expected yield of 

acetaldehyde in the absence of a radical scavenger is 0.2, given that kig = 

1.1 X 10® 39 and ki9 = 5.5 X 108 "*0 L moMs-1. To account for a yield of 

acetaldehyde that approaches 0.5, an additional reaction (equation 20 or 

21) is proposed. Precedent for equation 20 can be found in the reaction 

between (H20)5CrCH(CH3)2^+ and hydrogen peroxide^i and in the pulse 

radiolytic study of the hemolysis of (H20)5CrR2+ complexes.̂  ̂ The latter 
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Study suggested that rate constants for reactions of R» with CrR2+ can 

exceed 10® L moMs-1. If k2o has such a value, then the observed yield of 

CH3CHO (0.5) might be explained. However, a very valid objection can 

be raised to equation 20 in this case. Upon its occurrence, a second 

organochromium is lost. If that were the dominant path, the kobs would be 

2khom. That is, the experimental rate constant would be expected to drift 

by up to a factor of two as the reaction conditions and concentrations 

varied, which was not found experimentally. 

CH3CH(0H)CrL(H20)2+ + HgO = (H20)2CrL2+ + .CH(CH3)0H (17) 

2.CH(CH3)0H -> CH3CHO +CH3CH2OH (18) 

2 CH(CH3)0H ^ CH3CH(0H)CH(0H)CH3 (19) 

•CH(CH3)0H+CH3CH(0H)CrL2MCH3CH0+CH3CH20H +CrL^+ (20) 

CH3CH(0H)CrL(H20)2+ -> CH3CHO + HCrL(H20)2+ (21 ) 

HCrL(H20)2++ H3O+ ^ (H20)2CrL2+ + H2 (22) 

HCrL(H20)^+ + 2Co(NH3)5C|2+ -> (H20)CrL(CI)2+ + 2Co2+ + lONHj + CI (23) 

We therefore consider equation 21, a p-elimination reaction, 

sort of chemistry is well precedented elsewhere in organometallic 

This 
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chemistry- It would also account for the extra acetaldehyde, if it occurs 

concurrently with hemolysis. As such, it would not lead to the Idnetic 

problems raised by equation 20. The pentaaqua analog of the hydrido 

complex shown as a product is known independently43.44 evolve 

hydrogen under these conditions (equation 22). Indeed, H2 was 

observed as a product of decomposition of CH3CH(0H)CrL(H20)2+. 

In the presence of a scavenger such as Co(NH3)5C|2+ additional 

reactions occur, such as those shown in equations 13-14 and 23. The 

yield of acetaldehyde now rises to 0.82, indicating Cr-C bond hemolysis 

is also occurring. This is still lower than the expected value of 1, 

indicating that acidolysis of CH3CH(OH)CrL(H20)2+ may be occurring to 

a minor extent, or simply that some acetaldehyde is lost despite cooling 

the solution in ice. 

The predicted yield of Co2+ is 2.0 based on equations 13 and 14 if 

hemolysis predominates. However, in 0.16 N HCIO4 the yield was only 0.56 

([Co2+]oo/ [RCrL(H20)2+]o ). This indicates that, at most, 28% of the 

organochromium complex decomposes by hemolysis. Also, the Co2+ yield 

was found to be higher at lower acid concentration and to depend on 

CO(NH3)5C|2+ concentration. This is understood in terms of equations 22 

and 23. As cobalt concentration is increased, more hydrido complex reacts 

as in equation 22 and yields of Co2+ increase. At low [H+] and high cobalt 

concentration of 10.1 mM a yield of [Co2+]oo/ [RCrL(H20)2+]o = 1.76 was 

obtained. This is again slightly less than the expected yield of 2.0 and may 

be due to equation 22 or to a small contribution by acidolysis. 



www.manaraa.com

65 

To summarize, the product studies indicate that a significant portion of 

the decomposition of CH3CH(0H)CrL(H20)2+ is (3-elimination. The 

remainder may be hemolysis, however, a small 18%) contribution by 

acidolysis cannot be ruled out. This is similar to the case of 

isobutylcobalamin in which ^-elimination and Co-C bond hemolysis are 

competitive processes.^s 

Colligation reactions 

The rate constants KM v. referring to equation 5, were previously 

determined for many of these same radicals.® The values found here all 

agree within the experimental error; indeed, they were redetermined only 

because the subtraction inherent in the evaluation of kcoi (see equation 8) 

requires accurate values under precisely the same conditions. There are two 

factors that combine to mal<e MV+* an ideal probe for the reactions of alkyi 

radicals -- the high molar absorptivity of MV+* and the high values of KMV 

which allow the use of low concentrations of MV+* and the monitoring of an 

appreciable absorbance change. 

The values of kcoi. referring to the reactions of R* with (H20)2CrL2+, lie 

in a relatively narrow range, from 3.9 x 10^ L mol-is-i for R* = 1-methylpropyl 

to 1.9 X 10® L mol-is-i for benzyl. If one searches for a steric effect, reflected 

in the values of kcoi, say in a series like «CHs, •C2H5, •CH(CH3)2, it is largely 

absent. In the case of Cr(H20)6^+, much the same result was found,5.6 with 

values of kcoi ail near 2 x 10® L mol Is-1. The small reduction in rates in 

going from Cr(H20)6^+ to (H20)2CrL2+ may perhaps be attributed to a 

statistical effect (6 vs. 2 replaceable water molecules), or to the macrocycle 

partially blocking the approach of R». If this reaction, in which chromium(ll) is 
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oxidized, were really of an electron transfer character, one might have 

expected a faster reaction of the macrocyclic complex since it is the better 

reducing agent (E° -0.58 V vs. -0.41 V for Cr(H20)6^+). 

The important point is that the analogous reactions of the 

NI([14]aneN4)2+ complexes dû show a significant rate reduction along the 

series •CH3 > •C2H5 > •CH(CH3)2. The present results show that this cannot 

be attributed to an effect of the macrocycle. As suggested before,8 it is the 

steric effect of the radicals on the nickel reaction in which the coordination 

number changes, and the fact that the organonickel complexes readily 

homolyze since they have such weak metal-carbon bonds, that cause the 

large reactivity ratios. Also, a kinetic "leveling effect" may come into play for 

the six-coordinate cobalt(ll) and chromium(ll) complexes that is absent for 

four-coordinate nickel because colligation occurs with ligand interchange for 

them. Solvent exchange is itself not limiting (note kex = 7 x 109 s-i for 

Cr(H20)6^+):'*® rather, we suggest a competition between radical and solvent 

for the coordination site. 

Equilibrium 

The oppposing reactions of colligation and hemolysis, as in equation 

2, constitute a chemical equilibrium. The formation constant Kf = kcoi / khom-

Values in the RCrL(H20)2+ series are available for two R groups as 

summarized in Table 3 from this wori< and others.^.n 

The similarity of the two equilibrium constants merely reflects the few 

compounds whose hemolysis rates fall in a measurable region. Complexes 

with R groups such as CH3, C2H5, CH2OH, and so on are much less prone to 

homolyze and therefore have much larger values of Kf. These very 
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substantial differences in Kf are, therefore, due to the variation in khom. since 

the kcoi values do not change with R. That is, variations in the strengths of 

the chromium-carbon bonds are contained entirely in the dissociation rates, 

and not in those for bond formation. This is sensible, which is what makes 

the trend for nickel so remarkable in that rates in both directions show 

substantial and opposing effects.^ 

Table 3. Values of formation constants Kf = kcoi / khom for RCrL(H20)2+ 

complexes 

R kcoi/IO^L moMs-1 khom /10'^ S"1 log(Kf / L moM) 

•CH(CH3)2 8.5 5.0 11.23 

•CH2(C6H5) 19 1.24 12.19 

The rates of equilibration in equation 12 is controlled by the conposite 

constant kcoi[(H20)2CrL2+] + khom- Under all conditions the first term is much 

larger than the second, and equilibrium is established very rapidly since kcoi 

values are so large. Of course when a scavenger is added, the reaction, now 

controlled by khom. occurs very slowly. 

The equilibrium constants for several organometals are given in Table 

4. The organonickel complexes are much less stable than the 

organochromium complexes. This is certainly no surprising, because 

nickel(lll) is more strongly oxidizing than chromium(lll). The small values of 
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Kf for nickel may contribute to the fact that both of its components, kcoi and 

khom. vary with R. 

Table 4. Values of log Kf for organochromium and organonickel complexes 

R (H20)2CrL2+ Cr(H20)62+ RRRR-

fNi(ri41aneN4)2+1 

•CH(CH3)2 11.23 11.87 3.49 

•CH2C6H5 12.19 10.52 

•CH(CH3)0H - 10.96 

«CH2OCH3 : >13.8 6^82 
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APPENDIX 

Table A1. Kinetic data for the homolysis of([15]aneN4)CrCH(CH3)OH2+ a 

rCo(NH3)5C|2+l /10-3 M kobs / 10"'^ 
16.0 1.80 
14.0 1.75 
10.0 1.70 
6.0 1.82 

^Conditions: 25 "C in 0.1 M HCIO4, [RCr] ~ 3 mM and u ,= 1.0M 
(NaCI04). 

Table A2. Reaction of CH3 radical with MV+* a 

fMV+-Io/10-6 M fMV+*U10-6 M kobs/10^ S"^ kcorr/10^ S'^ 
11.84 9.23 1.71 1.21 
9.76 7.46 1.53 1.12 

14.96 12.32 2.46 1.98 
12.68 9.64 2.23 1.62 
10.17 7.64 1.73 1.24 
17.08 13.99 2.73 2.19 
14.90 11.65 2.48 1.87 
13.08 10.02 2.26 1.66 
10.75 8.31 2.09 1.55 

^Conditions: 25 °C, [CH3Co(dmgH)2] = 3.6 x 10-5 M. 
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Table A3. Reaction of CH2CH3 radical with MV+* a 

fMV-^]Q/10-6M rMV+'W10-6M kobs/10^S-1 kcorr/l 0^ S-l 
64.94 61.02 7.01 6.57 
56.75 52.87 5.60 5.20 
82.59 78.78 7.82 7.45 
74.23 70.25 8.59 8.12 
50.34 46.71 5.20 4.81 
43.78 40.10 4.65 4.24 
35.11 32.51 3.39 3.31 
30.09 26.97 3.28 2.92 
24.35 21.45 2.68 2.34 
38.43 34.02 4.21 3.70 
32.87 28.91 3.83 3.34 
27.40 24.01 3.12 2.71 

^Conditions: 25 °C, [CH3CH2Co(dmgH)2] = 1.0 x 10-4 M. 

Table A4. Reaction of 1-C3H7 radical with MV+* a 

rMV+-lo/10-6 M [MV+-]oo/10-6 M kobs/10^ S"^ kcorr/10^ S"^ 
73.63 70.25 7.55 7.25 
66.51 63.36 7.41 7.11 
62.68 59.55 6.44 6.17 
58.73 55.68 5.90 5.64 
55.72 52.80 5.76 5.50 
53.17 50.56 5.67 5.43 
50.60 48.13 5.29 5.07 
48.55 46.09 4.72 4.52 
46.28 43.95 5.22 5.00 
44.01 41.69 4.43 4.23 
40.79 38.77 3.86 3.70 
38.19 36.05 4.26 4.06 
35.81 34.02 3.92 3.75 
34.06 32.21 3.38 3.22 

^Conditions: 25 °C, [1-C3H7Co(dmgH)2] = 9.1 x 10*5. 
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Table A5. Reaction of CH(CH3)2 radical with MV+* a 

[MV+*yiO-6M rMV+-l«^10-6 M kobs/10^ S"^ kcorr/10'* S"1 
19.53 16.19 2.25 1.80 
15.36 11.94 2.27 1.66 
11.78 9.02 2.05 1.47 
9.67 7.17 1.80 1.23 

24.79 20.47 3.01 2.40 
21.25 17.39 2.83 2.23 
18.62 15.15 2.68 2.09 
16.06 12.90 2.25 1.73 
30.74 26.17 3.65 3.03 
26.61 22.49 2.94 2.42 
22.84 19.31 2.90 2.38 
19.96 16.82 2.65 2.17 
31.58 27.50 3.98 3.40 
26.72 22.68 3.62 2.99 
21.83 18.28 3.26 2.65 
17.67 14.55 2.61 2.07 

aConditions: 25 °C, [CH(CH3)2Co(dmgH)2] = 3.7 x 10-5 M. 

Table A6. Reaction of I-C4H9 radical with MV+*a 

fMV+-V10-6M [MV^-U10-6M kobs/IO^S'i kcorr/IO^ s-"» 
28.63 25.08 3.52 3.05 
25.29 21.94 3.52 3.02 
22.42 19.39 3.13 2.68 
19.72 17.11 2.81 2.41 
52.51 47.99 4.99 4.54 
48.32 43.82 4.59 4.14 
43.81 39.56 4.07 3.66 
39.98 36.14 4.01 3.61 
30.05 26.60 3.88 3.41 
26.93 23.74 3.58 3.13 
24.08 21.09 2.96 2.57 
21.72 19.15 3.01 2.63 
33.41 29.60 3.88 3.41 
28.10 24.06 3.55 3.00 
22.45 18.82 2.50 2.06 
18.04 15.05 2.27 1.86 

^Conditions: 25 "C, [1-C4H9Co(dmgH)2] = 7.8 x 10-5 M. 
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Table A7. Reaction of C(CH3)C2H5 radical with MV+* a 

[MV+V10-6M fMV+V10-6M kobs/IO^y kcorr/IO^ s-1 
51.98 47.72 6.28 5.74 
47.13 43.29 5.30 4.85 
42.34 39.00 4.92 4.52 
38.62 35.42 4.41 4.03 
33.73 30.72 4.04 3.66 
29.69 26.88 3.42 3.08 
26.20 23.93 3.08 2.80 
23.57 21.43 3.37 3.05 
45.81 42.30 4.83 4.45 
41.56 37.98 4.78 4.35 
37.27 34.06 4.14 3.77 
32.14 29.41 3.40 3.10 
28.27 25.73 3.12 2.83 
24.05 21.88 2.40 2.17 
20.92 18.79 2.54 2.27 

aConditions: 25 °C, [C(CH3)2(C2H5)Co(dmgH)2] = 5.2 x 10-5 M. 

Table A8. Reaction of CH2CH(CH3)2 radical with MV+* a 

[MV+-]o/10-6 M [MV+'UIO-e M kobs/104 s-1 kcorr/10'* S'^ 
64.73 59.37 6.23 5.69 
57.29 52.05 5.53 5.00 
50.83 46.11 5.14 4.64 
45.47 41.20 4.49 4.05 
40.29 36.84 4.30 3.92 
34.42 30.65 3.77 3.33 
29.34 25.58 3.09 2.67 
58.10 53.73 5.40 4.98 
63.34 58.26 6.06 5.55 
53.12 48.65 4.80 4.38 
48.70 44.24 4.73 4.28 
43.51 39.87 3.96 3.61 
38.81 35.33 3.66 3.32 
35.00 31.84 3.43 3.11 
31.78 28.91 3.09 2.80 

aConditions: 25 °C, [CH2CH(CH3)2Co(dmgH)2] = 7.8 x 10-5 M. 
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Table A9. Reaction of C-C5H9 radical with MV+' a 

fMV+-yiO-6M fMV+-]oo/10-6M kobs/IO^S-"' . kcorr/10^ S-1 
71.35 67.29 6.62 6.23 
66.57 62.98 5.71 5.39 
62.86 59.54 5.71 5.40 
58.98 55.83 5.92 5.60 
55.82 52.74 4.87 4.59 
52.48 49.67 4.37 4.13 
49.92 47.29 4.67 4.42 
47.51 45.02 4.83 4.57 
42.53 40.46 3.88 3.69 
44.85 42.52 4.19 3.97 
40.17 38.26 4.09 3.89 
53.85 49.56 4.84 4.44 
46.71 42.86 4.91 4.49 
40.98 37.17 4.10 3.70 
35.48 32.03 3.72 3.34 
30.02 26.91 2.86 2.55 

^Conditions: 25 °C, [c-C5H9Co(dmgH)2] = 3.8 x 10 5 M. 
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Table A10. Reaction of CH2C(CH3)3 radical with MV+* a 

fMV+1o/10-6 M rMV+*lco/10-6M kobs/104 S'l kcorr/10^ S'^ 
45.83 38.51 4.33 3.37 
39.69 32.93 3.72 2.83 
34.26 28.28 3.46 2.61 
29.20 23.77 2.97 2.19 
84.37 78.05 6.97 6.27 
79.46 73.19 6.01 5.38 
75.44 69.98 6.05 5.47 
71.27 66.33 5.50 4.99 
67.08 62.47 5.52 5.02 
63.45 58.91 5.24 4.74 
59.82 55.67 4.93 4.48 
56.06 51.83 4.27 3.84 
52.43 48.73 4.15 3.76 
49.41 45.68 3.78 3.40 
46.95 43.80 3.85 3.51 
44.33 41.09 3.51 3.17 
42.26 35.81 3.78 2.98 
36.27 30.36 3.27 2.53 
31.53 27.64 2.96 2.46 
28.11 24.01 2.53 2.02 

aConditions: 25 °C, [CH2C(CH3)3Co(dmgH)2] = 9.4 x 10-5 M. 
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Table All. Reaction of C6H5CH2 radical with MV+* a 

rMV+-lo/10-6 M [MV+-loc/10-6 M kobs/104 8-1 kcorr/l 0^ S"^ 
43.00 40.26 5.03 4.74 
39.21 36.36 4.91 4.59 
36.05 33.38 4.42 4.13 
32.36 29.73 4.12 3.82 
28.21 25.61 3.86 3.54 
24.58 22.07 3.32 3.01 
21.41 19.08 2.91 2.62 
61.25 58.54 7.35 7.06 
55.92 53.40 6.45 6.19 
52.55 50.29 6.11 5.88 
48.87 47.13 6.19 6.00 
45.78 43.57 5.70 5.46 
42.29 39.96 5.07 4.82 
39.34 36.93 5.06 4.78 
36.18 33.76 4.29 4.03 
53.44 50.66 6.11 5.83 
49.08 45.84 5.60 5.27 
46.14 43.24 5.42 5.12 
43.17 40.15 5.04 4.73 
39.63 36.96 4.47 4.20 
36.00 33.16 4.03 3.73 
32.23 29.65 3.87 3.59 
29.19 26.69 3.43 3.17 

^Conditions: 25 °C, [C6H5CH2Co(dmgH)2l = 4.2 x 10-5 M. 
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Table A12. Reaction of CH3OCH2 radical with MV+* a 

[MV+'yiO-6 M [MV+Moc/10-6 M kobR/104 s-1 kcorr/l 0^ S"^ 
51.32 48.96 5.64 5.40 
46.82 44.70 5.37 5.14 
42.17 40.06 4.11 3.92 
35.17 33.35 4.23 4.03 
32.59 30.69 3.77 3.56 
29.94 28.32 3.58 3.40 
26.77 25.20 3.19 3.01 
52.08 49.64 5.27 5.04 
49.27 46.84 5.49 5.24 
46.74 44.31 5.00 4.76 
43.52 41.25 5.00 4.76 
41.08 38.83 4.29 4.07 
38.76 36.56 4.39 4.16 
36.31 34.22 4.24 4.01 

^Conditions: 25 °C, [CH30CH2Co(dmgH)2] = 3.6 x 10 5 M. 
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Table A13. Reaction of CICH2 radical with MV+* = 

[MV+-lo/10-6 M fMV+1oo/10-6 M kobs/104 s'l kcorr/10^ S"^ 
43.36 41.39 5.42 5.20 
39.17 37.03 4.41 4.19 
35.44 33.51 3.76 3.58 
41.77 39.57 5.09 4.85 
44.30 42.32 4.58 4.40 
35.84 33.41 3.97 3.73 
33.14 30.70 3.88 3.62 
27.76 25.64 3.30 3.07 
24.55 22.19 2.69 2.45 
20.64 18.33 2.48 2.22 
47.64 45.57 6.06 5.83 
40.02 37.42 4.41 4.15 
36.04 33.78 4.03 3.80 
29.76 27.47 3.55 3.30 
25.28 23.32 2.88 2.68 
21.34 19.26 2.28 2.08 
58.10 55.80 6.31 6.09 
49.57 46.89 5.67 5.40 
42.55 40.00 4.45 4.21 
36.11 33.84 4.54 4.28 
30.48 28.01 3.50 3.24 
26.65 24.32 3.33 3.07 
22.19 20.03 2.55 2.32 

^Conditions: 25 °C, [CiCH2Co(dmgH)2] = 3.7 x 10-5 M. 
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Table Al4. Reaction of BrCH2 radical with MV+* a 

[MV+VIO-SM fMV+'W10-6M kobs/IO^S-l kcorr/IO^ S'l 
41.52 38.66 6.72 6.40 
49.28 46.11 8.18 7.82 
58.11 54.95 9.03 8.69 
70.94 68.17 11.4 11.1 
25.96 23.05 4.01 3.69 
20.59 17.71 3.47 3.12 
14.87 12.63 2.47 2.20 
43.30 39.72 5.69 5.36 
31.26 28.23 5.15 4.80 
25.54 22.81 3.95 3.65 
20.76 18.39 3.53 3.25 
68.87 66.06 10.4 10.1 
52.00 49.17 8.62 8.30 
45.65 42.91 8.05 7.72 
28.31 25.93 4.67 4.40 
23.01 20.54 3.45 3.19 
63.69 60.56 10.9 10.5 
47.72 45.25 6.88 6.64 
37.42 35.10 5.04 4.83 
52.48 49.88 5.61 5.42 
58.22 55.61 9.72 9.42 
45.64 42.89 7.89 7.56 

^Conditions: 25 °C, [BrCH2Co(dmgH)2] = 3.3 x 10 5 M. 
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Table Al 5. Reaction of CH3 radical with Cr([15]aneN4)2+ a 

[Cr(ll)] 
/10-4 M 

[MV+-]o 
/10-6 M 

A[MV+-] 
/10-6 M 

kobs 
/10^ s-1 

kcorr 
/104 s-1 

0.50 44.80 2.72 6.04 0.51 
0.50 40.02 2.91 5.78 0.79 
0.50 35.49 2.73 5.05 0.62 
1.00 60.54 2.91 8.88 1.43 
1.00 56.06 3.12 9.33 2.34 
1.00 54.50 2.98 9.32 2.52 
1.00 49.89 2.86 6.68 0.54 
1.00 46.23 2.66 6.27 0.57 
1.50 39.50 1.44 8.50 3.58 
1.50 42.07 1.56 7.80 2.60 
2.00 42.14 2.13 8.16 2.88 
2.00 39.20 1.82 8.53 3.60 
2.00 37.14 1.71 7.83 3.17 
2.50 42.00 1.35 10.1 4.83 
2.50 39.50 1.15 9.43 4.53 
2.50 37.47 0.90 8.89 4.27 
3.00 39.94 1.63 11.0 5.88 
3.00 37.03 1.37 9.56 4.90 

^Conditions: 25 °C, [CH3Co(dmgH)2] = (1.0-1.3) x 10 ^ M. 
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Table Al6. Reaction of CH3CH2 radical with Cr([15]aneN4)2+ a 

[Cr(ll)] 
/10-4 M 

[MV+-]o 
/10-6 M 

AIMV+*] 
/10-6 M 

kobs 
/104 s-1 

kcorr 
/104 s-1 

7.93 27.07 1.81 12.96 9.45 
7.93 31.36 2.21 14.15 10.1 
7.93 40.02 1.78 16.15 11.5 
6.87 42.33 2.66 12.21 7.32 
6.87 36.87 2.52 13.86 9.32 
6.87 31.53 2.04 13.40 9.45 
6.87 27.01 1.80 11.80 8.38 
5.84 38.46 2.39 12.47 7.94 
5.84 39.74 2.73 12.32 7.61 
5.84 27.31 1.79 10.77 7.40 
5.84 45.33 2.60 12.19 7.07 
4.67 38.17 2.85 10.25 5.78 
4.67 33.78 2.54 9.97 5.94 
4.67 70.39 3.38 13.66 6.12 
4.67 57.24 3.07 10.84 4.67 
4.67 46.03 2.80 10.21 5.11 
4.67 35.89 2.38 9.78 5.64 
3.79 66.40 3.99 10.06 3.00 
3.79 49.17 3.60 9.33 3.88 
3.79 41.13 3.16 7.91 3.32 
3.78 58.41 3.69 11.26 4.87 
2.82 36.85 3.31 6.67 2.52 
2.82 32.12 2.80 6.45 2.79 
2.82 27.67 2.40 6.14 2.94 
2.82 60.26 3.59 10.06 3.60 
2.82 52.30 3.33 8.25 2.64 
2.82 45.02 3.29 8.58 3.59 
1.79 85.87 4.54 9.87 0.97 
1.79 69.30 4.35 8.43 1.17 
1.79 75.84 2.72 9.78 1.97 
1.79 70.82 3.01 8.72 1.41 
0.76 65.55 3.63 8.02 1.19 
0.76 61.19 3.51 6.68 0.34 
0.76 44.54 3.14 5.28 0.60 
0.76 40.80 2.03 4.76 0.54 
0.76 39.40 2.76 4.89 0.73 
0.76 36.95 2.63 4.39 0.50 

aConditions: 25 °C. [CH3CH2Co(dmgH)2] = (1.0-2.0) x 10-4 M. 
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Table A17. Reaction of I-C3H7 radical with Cr{[15]aneN4)2+ a 

[Cr(ll)] 
/10-4 M 

[MV+-]o 
/10-6 M 

A[MV+-] 
/10-6 M 

kobs 
/104 s-1 

kcorr 
/104s-1 

1.57 53.31 4.47 6.95 1.14 
1.57 50.95 4.46 6.72 1.15 
1.57 49.29 4.10 6.40 1.04 
1.57 45.27 4.03 6.69 1.67 
2.17 53.86 4.29 8.36 2.41 
2.17 56.75 4.52 8.38 2.14 
2.97 60.42 4.22 8.73 2.16 
2.97 58.92 4.27 8.80 2.36 
2.97 55.93 3.88 8.58 2.47 
3.79 59.91 3.69 10.98 4.37 
3.79 55.45 3.41 9.72 3.63 
3.79 58.45 3.51 11.37 4.90 
4.48 58.79 3.88 10.65 4.14 
4.48 55.46 4.14 9.73 3.54 
4.48 52.78 3.41 9.09 3.29 
4.48 50.04 3.60 8.59 3.04 
5.08 57.76 3.37 11.33 4.94 
5.08 54.26 3.29 11.96 5.86 
5.08 50.30 3.13 10.78 5.13 
5.08 47.31 3.08 10.49 5.13 

aConditions: 25 °C, [1-C3H7Co(dmgH)2] = (0.9-2.3) x 10-4 M. 
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Table Al 8. Reaction of CH(CH3)2 radical with Cr([15]aneN4)2+ a 

[Cr(ll)] 
/10-4 M 

[MV+-]o 
/10-6 M it kobs 

/104 s-1 
kcorr 
/104s-1 

0.95 39.22 6.25 6.32 1.16 
0.95 24.89 4.83 4.63 1.15 
0.95 31.23 5.66 4.75 0.62 
0.95 20.40 3.97 4.40 1.43 
0.95 25.62 4.45 4.68 1.18 
0.95 31.67 5.43 4.91 0.74 
2.20 36.90 4.60 6.37 1.60 
2.20 40.82 5.13 6.56 1.33 
2.20 47.98 5.53 7.30 1.25 
2.20 52.15 6.15 7.39 0.86 
2.20 45.85 4.85 6.78 1.05 
2.20 50.51 5.16 6.77 0.54 
2.20 56.20 5.53 7.80 0.86 
3.46 47.98 4.96 8.61 2.48 
3.46 41.86 4.79 7.49 2.10 
3.46 37.06 4.27 7.03 2.21 
3.46 55.06 5.17 9.29 2.37 
3.46 49.09 4.90 8.48 2.26 
3.46 42.71 4.38 7.17 1.77 
3.46 37.57 4.14 6.94 2.09 
4.87 24.10 2.86 6.91 3.51 
4.87 32.32 3.71 7.66 3.30 
4.87 36.78 4.29 8.70 3.73 

4.87 23.50 2.78 7.20 3.84 
4.87 26.95 3.21 7.76 3.95 
4.87 30.69 3.51 8.05 3.83 
4.87 35.06 3.95 7.71 3.05 
5.95 35.71 3.92 7.92 3.19 
5.95 30.35 3.38 8.68 4.45 
5.95 51.60 4.35 9.47 2.97 
5.95 41.82 3.90 9.98 4.48 
5.95 22.80 2.96 7.77 4.35 
5.95 31.68 3.23 8.18 3.91 



www.manaraa.com

86 

Table A18 Continued 

[Cr(ll)] 
/10-4 M 

[MV+-]o 
/10-6 M 

AIMV+-] 
/10-6 M 

kobs 
/104 s-1 

kcorr 
/104 s-1 

7.28 30.09 3.32 9.67 5.38 
7,28 36.39 3.66 8.68 3.85 
7.28 44.00 4.37 10.11 4.31 
7.28 52.37 4.93 10.80 4.05 
7.28 32.92 3.47 8.82 4.33 
7.28 39.09 3.98 9.29 4.10 
7.28 45.64 4.48 9.46 3.55 
7.28 52.90 5.08 11.67 4.77 
8.32 41.48 4.42 9.64 4.12 
8.32 33.00 3.63 8.97 4.43 
8.32 27.59 3.33 9.65 5.56 
8.32 21.39 2.79 7.14 3.95 
8.32 50.15 4.47 11.09 4.60 
8.32 42.35 4.10 10.36 4.74 
8.32 35.51 3.49 9.46 4.67 
8.32 28.64 3.06 8.81 4.79 
9.54 29.42 2.72 12.11 7.82 
9.54 24.08 2.21 9.59 6.11 
9.54 20.53 1.77 9.43 6.41 
9.54 17.38 1.54 9.73 7.02 
9.54 36.37 3.34 11.34 6.35 
9.54 30.32 3.00 10.53 6.22 
9.54 25.81 2.55 9.91 6.16 
9.54 21.44 2.10 9.42 6.21 

aConditions: 25 °C, [CH(CH3)2Co(dmgH)2] = (1.2-1.6) x 10-4 M. 



www.manaraa.com

87 

Table A19. Reaction of I-C4H9 radical with Cr([15]aneN4)2+ a 

[Cr(ll)] 
/10-4 M 

[MV+-]o 
/10-6 M 

kobs 
/104 s-1 

kcorr 
/104 s-1 

0.22 26.21 2.84 3.69 0.43 
0.22 29.59 3.03 3.81 0.17 
0.81 67.25 3.37 8.58 0.53 
0.81 74.63 4.17 10.25 1.26 
2.23 38.68 2.59 6.87 2.09 
2.23 44.69 3.04 7.38 1.88 
2.23 44.79 3.85 7.40 1.82 
3.35 52.92 2.78 9.27 2.81 
3.35 57.85 2.97 9.39 2.37 
3.35 63.52 3.12 10.20 2.51 
3.78 57.12 2.19 10.51 3.60 
3.78 60.93 2.62 10.07 2.72 
3.78 65.41 2.89 12.63 4.66 
3.78 68.82 2.68 12.36 4.05 
4.61 53.30 2.79 9.57 3.06 
4.61 40.65 2.42 9.19 4.09 
5.65 43.84 2.19 10.87 5.39 
5.65 47.96 2.22 9.97 4.08 
5.65 51.40 2.37 10.31 4.02 

^Conditions: 25 °C, [1-C4H9Co(dmgH)2] = (0.45-0.89) x 10-4 M. 
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Table A2-20. Reaction of C(CH3)C2H5 radical with Cr([15]aneN4)2+ a 

[Cr(ll)] 
/10-4 M 

[MV+-]o 
/10-6 M 

A[MV+-] 
/10-6 M 

kobs 
/104 s-1 

kcorr 
/104s-1 

0.19 21.41 3.21 3.03 0.44 
0.19 25.25 3.51 2.98 0.03 
0.19 30.11 3.99 3.94 0.39 
0.19 35.12 4.66 4.12 0.04 
0.73 54.67 4.12 6.71 0.54 
1.81 26.28 3.38 4.77 1.51 
1.81 27.89 3.50 4.61 1.22 
1.81 30.26 3.78 4.86 1.20 
1.81 32.53 3.96 4.89 1.00 
2.53 33.50 3.46 5.50 1.51 
2.53 36.73 3.76 6.04 1.67 
2.53 38.32 4.02 5.92 1.39 
2.53 40.18 4.04 6.02 1.31 
3.19 48.57 4.43 6.78 1.17 
3.19 47.69 4.17 7.76 2.18 
3.19 45.27 3.87 7.20 1.92 
3.19 41.98 3.80 7.07 2.12 
4.13 32.38 3.02 6.19 2.30 
4.13 34.85 3.18 6.65 2.47 
4.13 37.81 3.27 6.94 2.45 
4.13 40.53 3.48 6.76 2.01 
4.67 50.60 3.62 8.19 2.36 
4.67 57.93 4.35 8.98 2.31 
4.67 60.55 4.47 9.72 2.73 
5.44 39.81 3.64 8.69 3.82 
5.44 43.27 3.96 8.43 3.22 
5.44 47.26 4.03 9.02 3.39 
5.44 51.23 4.62 9.34 3.24 

aConditions: 25 °C, [C(CH3)C2H5Co(dmgH)2] = (0.5-1.0) x 10-4 M. 
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Table A21. Reaction of CH2CH(CH3)2 radical with Cr([15]aneN4)2+ a 

[Cr(ll)] 
/10-4 M 

[MV+-]o 
/10-6 M 

II 

kobs 
/104 s'l 

kcorr 
/104s-1 

1.29 55.50 3.96 5.87 0.45 
1.29 59.71 4.16 6.55 0.71 
1.29 64.50 4.27 6.87 0.59 
1.58 45.66 2.88 5.05 0.68 
1.58 50.09 4.34 5.36 0.52 
1.58 55.02 4.75 5.84 0.53 
1.58 60.32 4.81 6.17 0.38 
2.34 75.56 4.47 8.92 1.68 
2.34 79.96 4.65 9.62 1.95 
2.48 46.19 3.91 5.95 1.29 
2.48 41.84 3.60 5.53 1.29 
2.48 39.20 3.53 5.26 1.26 
2.97 52.82 3.94 7.36 2.18 
3.36 37.08 2.93 6.78 2.88 
3.36 40.50 3.11 6.40 2.25 
3.36 44.09 3.29 7.24 2.71 
3.36 48.34 3.75 7.62 2.66 
3.79 84.85 4.45 11.03 2,74 
3.79 79.69 4.27 11.48 3.62 
3.79 74.90 4.01 9.81 2.48 
3.88 55.28 3.20 7.58 2.23 
3.88 59.51 3.70 8.45 2.66 
3.88 63.77 3.93 8.88 2.69 
3.88 66.10 3.94 9.44 3.02 
4.62 56.52 3.60 9.21 3.64 
4.62 61.28 3.91 9.22 3.22 
4.65 50.94 3.69 8.91 3.64 
5.51 43.88 3.08 9.34 4.69 
5.51 48.98 3.04 9.32 4.28 
5.61 49.90 3.70 8.97 3.95 
5.61 40.57 3.08 8.20 4.05 

aConditions: 25 °C. [CH2CH(CH3)2Co(dmgH)2] = (3.9-7.8) x 10-5 M. 
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Table A22. Reaction of C-C5H9 radical with Cr([15]aneN4)2+ a 

[Cr(ll)] 
/10-4 M 

[MV+-]o 
/10-6 M 

A[MV+-] 
/10-6 M 

kobs 
/104 s-i 

kcorr 
/I04s-1 

0.12 47.40 3.46 4.66 0.13 
0.64 72.10 3.68 7.21 0.43 
1.63 66.39 3.88 7.11 0.80 
1.63 50.82 3.12 5.84 0.97 
1.63 60.96 3.64 8.08 2.17 
1.63 56.01 3.38 7.11 1.70 
2.47 47.39 3.67 6.74 2.01 
2.47 43.75 3.71 6.03 1.64 
2.47 36.77 3.07 4.89 1.23 
3.43 39.37 2.78 7.02 3.01 
3.43 42.46 2.98 7.40 3.09 
3.43 46.17 3.23 8.31 3.61 
3.43 49.02 3.43 7.02 2.17 
4.03 40.65 2.91 7.83 3.64 
4.03 43.07 3.26 7.22 2.84 
4.03 46.17 3.23 8.31 3.61 
4.03 50.52 3.73 7.73 2.67 
5.46 43.72 2.71 8.49 4.05 
5.46 47.45 2.57 9.92 5.13 
5.46 53.60 3.16 9.44 4.09 

aConditions: 25 °C, [c-C5H9Co(dmgH)2] = (5.3-9.1) x 10-5 M. 
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Table A23. Reaction of CH2C(CH3)3 radical with Cr([15]aneN4)2+ a 

[Cr(ll)] 
/10-4 M 

[MV+*]o 
/10-6 M 

A[MV+*] 
/10-6 M 

kobs 
/104 s-1 

kcorr 
/lO^s-l 

0.91 44.68 3.19 4.41 0.69 
0.91 47.59 3.62 4.42 0.47 
0.91 51.43 3.69 4.90 0.64 
0.91 56.08 4.11 5.29 0.64 
1.61 45.76 3.02 5.02 1.19 
1.61 48.66 3.25 4.96 0.92 
1.61 51.43 3.41 4.94 0.70 
1.61 57.68 3.82 6.01 1.22 
2.45 44.16 3.15 5.33 1.56 
3.88 31.39 2.36 5.09 2.26 
4.75 43.24 3.07 7.17 3.30 
4.75 37.54 2.59 6.23 2.88 
4.75 32.25 2.40 6.45 3.45 
4.75 27.28 1.89 5.43 2.91 
5.87 41.06 3.23 8.18 4.29 
5.87 37.52 2.90 7.60 4.05 
5.87 33.94 2.79 7.39 4.08 
5.87 30.73 2.35 7.31 4.29 

aConditions: 25 °C, [CH2C(CH3)3Co(dmgH)2] = (3.3-7.5) x 10-5 M. 
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Table A24. Reaction of C6H5CH2 radical with Cr([15]aneN4)2+ a 

[Cr(ll)] 
/10-4 M 

[MV+-]o 
/10-6 M 

A[MV+*] 
/10-6 M 

kobs 
/104 s-1 

kcorr 
/I04s-1 

0.31 42.10 2.08 5.42 0.38 
0.31 43.11 2.32 5.99 0.80 
0.96 42.01 2.62 6.86 1.72 
0.96 38.31 2.33 6.62 1.92 
1.54 49.09 2.40 8.72 2.74 
1.54 46.48 2.36 9.11 3.40 
1.54 44.07 2.36 7.78 2.40 
1.54 41.82 2.18 8.60 3.44 
2.38 34.56 1.76 10.26 5.86 
2.38 33.89 1.98 9.92 5.56 
2.38 32.97 1.99 8.70 4.50 
2.38 31.92 1.75 8.92 4.86 
3.12 38.58 1.71 14.80 9.81 
3.12 37.70 1.53 13.40 8.60 
3.12 36.42 1.71 10.20 5.62 
3.12 34.79 1.70 9.73 5.34 
3.66 45.10 1.66 11.41 5.86 
3.66 43.15 1.57 15.98 10.5 

aConditions: 25 °C, [C6H5CH2Co(dmgH)2] = (0.6-1.3) x 10*4 M. 
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Table A25. Reaction of CH3OCH2 radical with Cr([15]aneN4)2+ a 

[Cr(ll)] 
/10-4 M 

[MV+-]o 
/10-6 M li

 

kobs 
/104 s-1 

kcorr 
/104 s-1 

0.13 42.04 3.09 4.79 0.15 
0.13 37.97 3.08 4.45 0.23 
0.13 34.40 2.75 4.24 0.41 
0.64 73.67 3.48 8.98 0.95 
0.64 68.60 3.44 8.37 0.87 
1.49 55.00 3.10 8.92 2.77 
1.49 49.57 3.17 8.28 2.68 
1.49 46.21 2.83 8.62 3.36 
1.49 42.12 2.70 7.61 2.81 
2.21 57.73 2.85 9.50 3.08 
2.21 54.21 2.57 9.90 3.84 
2.21 50.48 2.60 9.21 3.54 
2.21 47.33 2.46 9.98 4.59 
2.97 51.21 2.95 10.21 4.37 
2.97 47.14 2.72 9.81 4.41 
3.79 52.96 2.54 11.41 5.40 
3.79 49.42 2.27 12.32 6.66 
3.79 46.46 2.47 12.21 6.79 
3.79 42.96 2.30 10.93 5.93 
4.65 55.63 2.16 14.78 8.45 
4.65 67.53 2.12 15.91 8.39 
5.38 59.85 2.18 15.85 9.07 
5.38 62.86 1.95 14.27 7.29 
5.38 56.37 1.95 15.44 9.06 
5.38 52.92 1.49 15.84 9.88 

aConditions: 25 °C, [CH30CH2Co(dmgH)2] = (1.8-2.7) x 10*5 M. 
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Table A26. Reaction of CICH2 radical with Cr([15]aneN4)2+ a 

[Cr(ll)] 
/10-4 M 

[MV+-]o 
/10-6 M 

A[MV+-] 
/10-6 M 

kobs 
/104 s-1 

kcorr 
/104 s-1 

3.95 47.67 1.42 11.06 5.46 
3.95 45.95 1.31 10.62 5.23 
3.95 44.62 1.36 11.49 6.21 
3.95 46.02 1.46 10.60 5.18 
3.95 44.24 1.39 9.97 4.77 
3.95 42.42 1.60 9.48 4.45 
3.38 42.89 1.66 9.18 4.11 
3.38 40.71 2.00 8.43 3.57 
3.38 39.38 1.65 8.23 3.56 
3.38 57.88 1.62 10.56 3.85 
3.38 54.05 1.73 10.90 4.58 
2.80 47.23 1.90 8.21 2.68 
2.80 45.76 1.90 8.48 3.10 
2.80 44.22 2.06 8.62 3.38 
2.80 48.97 2.06 9.30 3.53 
2.80 46.66 1.98 8.62 3.13 
2.80 44.78 2.10 8.54 3.24 
2.42 49.36 2.49 8.29 2.47 
2.42 46.07 2.13 7.49 2.09 
2.42 43.36 2.48 7.13 2.00 
2.42 51.69 2.16 8.43 2.39 
2.42 44.64 2.19 6.76 1.54 
1.85 41.72 2.30 6.65 1.73 
1.85 38.84 2.44 6.16 1.56 
1.85 36.85 2.46 5.97 1.58 
1.85 47.11 2.21 6.84 1.35 
1.85 44.51 2.23 6.79 1.58 
1.85 41.71 2.28 6.56 1.65 
1.39 69.31 2.81 10.01 1.97 
1.39 57.92 2.99 7.85 1.11 
1.39 60.59 3.30 7.63 0.59 
1.39 54.30 3.08 7.31 0.97 
1.39 49.44 3.04 6.61 0.82 
0.90 55.32 2.54 6.84 0.45 
0.90 52.02 2.44 6.70 0.67 
0.90 54.03 2.43 6.81 0.56 

aConditions: 25 °C, [CICH2Co(dmgH)2] = (1.3-1.7) x 10*4 M. 
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Table A27. Reaction of BrCH2 radical with Cr([15]aneN4)2+ a 

[Cr(ll)] [MV+-]o A[MV+-] 
/10-6 M 

kobs kcorr 
/10-4 M /10-6 M 

A[MV+-] 
/10-6 M /104 s-1 /104 s-1 

3.50 34.09 0.69 12.55 6.33 
3.50 31.93 0.76 11.14 5.31 
3.50 34.37 0.93 11.18 4.91 
3.00 31.09 1.03 11.19 5.48 
3.00 27.82 1.39 8.55 3.42 
3.00 44.83 1.52 11.74 3.58 
3.00 32.46 1.63 9.76 3.78 
2.50 41.15 1.81 11.37 3.84 
2.50 32.18 1.84 9.71 3.77 
2.50 26.56 1.73 7.88 2.96 
2.50 20.85 1.69 5.94 2.06 
2.50 16.20 1.51 5.77 2.68 
2.00 26.31 1.58 7.48 2.63 
1.50 34.81 2.11 8.20 1.84 
1.50 26.41 2.08 6.95 2.07 
1.50 20.95 1.89 6.12 2.20 
1.50 38.77 2.25 9.83 2.73 
1.50 29.18 1.97 7.97 2.59 
1.50 22.76 1.93 5.98 1.76 
1.00 30.91 2.06 6.73 1.09 
1.00 36.98 2.33 8.13 1.39 
0.50 42.13 2.68 8.18 0.54 

^Conditions: 25 °C, [BrCH2Co(dmgH)2] = (1.3-2.6) x10-4 M. 
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Table A28. Reaction of CH3 radical with Cr([15]aneN4)2+ using 
RCo([14]aneN4)2+a 

[Cr(ll)] 
/10-4 M 

[MV+-]o 
/10-6 M 

A[MV+-] 
/10-6 M 

kobs 
/104 s-1 

kcorr 
/104 s-1 

0.40 30.74 3.40 4.61 0.68 
0.40 28.66 2.70 4.33 0.70 
0.80 27.45 2.36 4.67 1.17 
0.80 25.00 2.41 4.13 0.93 
1.20 31.29 1.89 6.41 2.44 
1.20 30.75 1.76 6.32 2.43 
1.20 29.59 2.00 6.00 2.22 
1.20 28.67 2.00 6.04 2.36 
1.60 30.50 1.74 7.96 4.01 
1.60 29.78 1.70 7.64 3.79 
1.60 28.94 1.66 7.35 3.62 
1.60 27.91 1.62 7.51 3.88 
2.00 27.01 1.16 8.75 5.26 
2.00 30.19 1.22 9.83 5.94 
2.00 29.80 1.19 9.86 6.02 
2.40 32.85 1.83 10.59 6.25 
2.40 31.13 1.84 9.97 5.84 
2.40 28.84 1.75 10.28 6.39 
2.80 19.43 1.16 9.20 6.47 
2.80 18.67 1.15 9.41 6.74 
2.80 17.83 0.99 9.20 6.68 
3.20 25.29 1.27 12.01 8.54 
3.20 28.53 1.40 10.49 6.71 

aConditions; 25 °C, [CHaCodI 4]aneN4)2+] = 2.0 x 10-5 M. 
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Table A29._ Reaction of CH3CH2 radical with Cr([15]aneN4)2+ using 
RCo{[14]aneN4)2+ a 

[Cr(ll)] 
/10-4 M 

[MV+*]o 
/10-6 M 

A[MV+-] 
/10-6 M 

kobs 
/104 s-1 

kcorr 
/104 s-1 

0.40 10.73 1.73 1.63 0.36 
0.90 53.24 4.10 6.52 0.88 
0.90 50.00 3.75 6.08 0.79 
0.90 47.96 4.02 6.16 1.03 
1.80 41.54 3.54 6.65 2.08 
1.80 40.75 3.83 6.41 1.89 
1.80 40.61 3.74 5.81 1.38 
2.60 69.13 2.30 8.59 1.50 
2.60 71.38 2.64 9.07 1.72 
2.60 72.25 3.16 8.74 1.28 
3.30 52.12 2.67 8.78 3.24 
3.30 53.21 2.57 8.03 2.44 
3.30 53.73 2.40 9.09 3.42 
4.00 67.32 2.18 11.64 4.63 
4.00 69.70 2.53 10.65 3.41 
4.00 68.44 2.40 10.38 3.29 
5.00 44.95 1.86 10.03 5.20 
5.00 44.02 1.75 9.06 4.38 

aConditions: 25 °C. [CH3CH2Co([14]aneN4)2+] = (3.3-5.0) x 10-5 M. 



www.manaraa.com

98 

Table A30. Reaction of CH3OCH2 radical with Cr([15]aneN4)2+ using 
RCo([14]aneN4)2+a 

[Cr(ll)] 
/10-4 M 

[MV+-]o 
/10-6 M 

A[MV+*] 
/10-6 M 

kobs 
/104 s-1 

kcorr 
/104 s-1 

0.74 60.74 2.88 7.59 0.96 
1.63 74.59 3.44 10.12 1.95 
2.54 45.80 2.41 8.82 3.64 
2.54 46.29 2.33 9.03 3.81 
2.54 46.22 2.43 9.39 4.14 
3.09 64.54 2.64 10.79 3.66 
3.09 63.51 2.53 10.90 3.88 
3.09 60.63 2.59 12.51 5.71 
3.73 57.41 1.99 12.67 6.27 
3.73 58.58 2.38 12.24 5.68 
3.73 58.16 2.02 10.80 4.38 
3.73 56.39 2.41 10.65 4.36 
4.48 50.88 1.90 11.39 5.69 
4.48 60.96 1.74 13.29 6.56 
4.48 57.80 1.86 14.17 7.70 
4.48 54.55 1.86 14.28 8.13 
5.38 44.72 1.26 12.15 7.15 
5.38 43.12 1.35 13.50 8.60 
5.38 40.54 1.50 12.99 8.31 
5.38 38.40 1.46 12.47 8.02 

aConditions: 25 °C. [CH30CH2Co([14]aneN4)2+] = 6.7 x 10*5 M. 
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Table A31. Reaction of CHaBr radical witti Cr([15]aneN4)2+ using 
RCo([14]aneN4)2+a 

[Cr(ll)l [MV+*]o A[MV+-] 
/10-6 M 

kobs kcorr 
/10-4 M /10-6 M 

A[MV+-] 
/10-6 M /104 s-1 /104 s-1 

0.40 41.57 2.52 8.12 0.62 
0.40 38.52 2.39 6.99 0.06 
0.40 35.87 2.29 7.86 1.35 
0.70 61.79 2.28 12.21 1.10 
0.70 59.77 2.12 12.53 1.77 
0.70 57.83 1.97 11.30 0.91 
1.00 41.99 2.09 9.27 1.68 
1.00 40.11 0.93 7.92 0.72 
1.00 38.61 1.89 9.80 2.78 
1.00 36.35 1.88 7.91 1.34 
1.30 35.72 1.79 8.84 2.35 
1.30 37.85 2.00 7.83 1.00 
1.30 40.48 2.01 9.51 2.17 
1.60 43.15 1.93 10.02 2.21 
1.60 41.91 1.81 11.99 4.35 
1.60 45.83 1.80 10.55 2.27 
1.60 45.08 2.08 10.94 2.77 
1.90 48.01 1.90 11.57 2.89 
1.90 44.96 1.80 10.93 2.79 
2.10 35.11 1.65 8.59 2.22 
2.10 32.26 1.83 10.31 4.36 
2.10 30.27 1.59 9.83 4.26 
2.10 28.17 1.50 7.44 2.30 
2.40 34.71 1.68 9.14 2.82 
2.40 32.33 1.83 12.08 6.06 
2.40 29.98 1.75 8.88 3.37 
2.40 27.69 1.69 8.64 3.53 

^Conditions: 25 °C. [BrCH2Co([14]aneN4)2+] = 3.3 x 10*5 M. 
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PART III REACTIONS OF THIYL RADICALS WITH 
TRANSITION METAL COMPLEXES 
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INTRODUCTION 

ThiyI radicals are intermediates in the oxidation of thiols to disulfides. 

These sulfur-centered radicals have been shown to be produced in 

biological systems in reactions of oxidative enzymes with thiols/^ ThiyI 

radicals have most often been generated for chemical studies using the 

technique of pulse radiolysis. This is accomplished by reactions of H* or «OH 

with thiols (eq. 1 and 2). With alcohols present hydroxyalkyi radicals are 

generated (eq 3), which abstract a hydrogen atom from a thiol in the so-

called repair reaction^ 8 (eq 4). This reaction is utilized in biological systems 

to protect against radiation damage and against naturally occurring radicals. 

Studies of the repair reaction Involving a variety of carbon-centered radicals 

with thiols such as cysteine, glutathione, cysteamine and mercapto-ethanol 

have been carried out pulse radiolytically. These studies have included 

radicals derived from alcohols, glucose, acetone, nucleic acid components 

(uracil, thymine, dihydrothymine and thymidine) as well as polymers such as 

ethylene glycol and polyethylene oxide.5-8 The forward reaction typically 

has rate constants, k4, on the order of 10^-l o^ L mo|-^s-i. The sulfur-

hydrogen bond dissociation Enthalpy in alkane thiols is 88 kcal mol-i and is 

independent of the length and configuration of the alkyi chain.s Thus, alkane 

thiyi radicals are able to abstract hydrogen in the reverse of the repair 

reaction. This reverse reaction generally occurs much more slowly with k.4 = 

103-107, depending on how strongly activated the C-H bond is,^0'ii and is 

believed not to be important here. 
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H + RSH -> H2 + RS- (1) 

•OH + RSH —> H2O + RS (2) 

•OH + CH3OH -> H2O + •CH2OH (3) 

•CH2OH + RSH o CH3OH + RS (4) 

Direct (UV) photolysis of disulfides may lead to cleavage of the S-S or 

a C-S bond (eq 5 and 6). For simple (methyl, ethyl) disulfides reaction 6 was 

found to be unimportant. In the photolysis of mixtures of neat methyl and 

ethyldisulfides, the sole detectable product was ethylmethyl disulfide formed 

with extremely high quantum yield ((|> = 330) attributed to a chain propagating 

step (eq 7).^3 With more highly substituted disulfides, such as di-tert-butyl 

and penicillamine disulfides, reaction 6 becomes much more important. 

From gas phase studies the S-S bond energy in disulfides was found to be 

68.1 kcal mol""" and was independent of the nature of R. The C-S bond 

energy in the case of EtSSR (R = H, alkyi) was found to be 57.6 kcal mol-\9 

Photons of 250-290 nm have enough energy to break these C-S bonds, so 

other factors must affect the yields. The cleavage of the C-S bond is 

apparently not very important unless particularly stable alkyi radicals are 

products. 14 

RSSR + hv ^ 2RS (5) 
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RSSR + hv ^ R- + RSS (6) 

RSSR + R'S RS + RSSR' (7) 

ThiyI radicals have been identified by spin trapping studies employing 

DMPO and TMPO.^, 15-17 The lack of nuclear spin in the main sulfur isotope, 

32s, prevents any information from ESR on structural aspects. ThiyI radicals 

are not easily detectable spectroscopically, having molar absorptivities of 

only several hundred at 300 nm.i8 For this reason many studies involving 

RS* have been carried out in strongly alkaline media (pH > 8), where the 

thiol is deprotonated and the disulfide radical anion is formed (eq 8).i9'20 

This species is highly coloredi^ with a molar absorptivity of ~9000 L 

mol'icm-1 around 420 nm. The reverse of reaction 8 is also a convenient 

method of producing thiyi radicals. One electron reduction of disulfides 

generates the disulfide radical anion, which rapidly decays, especially in the 

absence of excess thiolate. 

RS" + RS = RSSR- (8) 

Simple aliphatic thiyI radicals react with molecular oxygen (eq 9) in what 

may actually be a reversible process, with rate constants on the order of 10^ 

L moMs-1.21 

RS + O2 —^ RSO2 (9) 
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Reactions of arenethiyi radicals with olefins have been studied and have 

been shown to be reversible. The reaction is an addition to the double bond 

and occurs with rate constants on the order of 10®-107 L mol ^s ^ for systems 

such as styrene that give stabilized carbon-centered radicals.22 This 

reaction has been used in the case of 1,1-diphenyl ethylene to yield the 

highly colored substituted diphenyl methyl radical. This was then used as a 

kinetic probe in isooctane.23 

The thiyi radical oxidizes compounds such as ferrocytochrome 0,^4 

NADH,25 ascorbate, phenothiazines^s and organometallic substrates such 

as boranes, phosphines and phosphites.23 The potential for the RS*/RS-

couple has been estimated as 0.77 V vs NHE.27 Recently, two studies of RS* 

oxidizing complexes of Cu(l) have been earned out.28.29 The thiyI radicals 

oxidize the Cu(l)L2 complex (L = cysteine) with a diffusion controlled rate 

constant, k = 1.8 x 109 L moMs-\ These studies were complicated by the 

equilibrium with CU2L3 (eq 10), by acid-base equilibria and by back 

reactions such as reaction 11. 

2CUL2 = CUgLg + L (10) 

RSSR" + Cu"Ly -> RSSR + Cu'Ly (11 ) 

The presence of sulfur in the active site of many enzymes and its role in 

electron transfer reactions makes such studies of interest. Transition metal-

thiolate complexes may serve as models in understanding the metal-thiol 

interactions in systems like non-heme iron-sulfur proteins.30 
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In this study a simple method for generating sulfur-centered radicals and 

studying their reactions was developed using visible laser flash photolysis. 

This method involved well-established reactions to generate the radicals and 

allowed the study of their reactions in acidic and neutral aqueous solution. 

This was done by taking advantage of the repair reaction and by using two 

kinetic probes: ABTS^- (2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulfonate) 

ion) and TMPD (N,N,N',N'-tetramethyl-1,4-phenylenediamine). ThiyI radicals 

were also generated by direct photolysis of diethyl disulfide at 266 nm. 

Studies of thiyi radicals with a variety of transition metal complexes are 

described here. Hexaaqua metal ions of chromium(ll), iron(ll) and 

vanadium(ll) were studied, along with a series of cobalt(ll) macrocyclic 

complexes. Product studies were carried out to elucidate the mechanisms 

involved. 



www.manaraa.com

I 

106 

EXPERIMENTAL 

Materials 

All water used in this study was in-house distilled, deionized water 

passed through a Millipore-Q purification system. All chemicals were used 

as received unless noted below. Solutions were degassed by purging with 

water-saturated argon (99.99 % pure, Air Products Corp.). Solutions were 

transferred anaerobically using syringe and septa techniques. Ethane thiol 

(Johnson Matthey Electronics) was purified by passing it through neutral 

activated alumina having a Brockman activity of 1 and 80-200 mesh (Fisher). 

This removed the less soluble disulfide impurity. The complexes 

RCo([14]aneN4)2+ (R = CH3, C2H5) were prepared according to literature 

procedures.3i Stock solutions of these radical precursors were protected 

from light. Stock solutions of N,N,N',N'-tetramethyl-1,4-phenylenediamine 

(Aldrich) were prepared by addition of the solid to degassed water and were 

protected from light. A solution of phosphate buffer (0.10 M) was prepared by 

mixing solutions of KH2PO4 and K2HPO4 until the pH was 7.0 as determined 

by a Jenco pH meter. 

Solutions of Cr(H20)6^+ in aqueous perchloric acid were prepared by 

reduction of solutions of Cr(CI04)3 over zinc amalgam. Solutions of V02+ in 

aqueous perchloric acid were prepared from V0S04»xH20, which was 

adsorbed onto Dowex 50W-X4 cation exchange resin. Sulfate ions were 

rinsed from the column with dilute HCIO4 and V02+ was eluted with 2 M 

HCIO4. The concentration of V02+ was determined spectrophotometrically 

( £760 = 17.5 L moMcm-i) and the acid content was determined by 

difference. Solutions of V(H20)62+ were prepared by reduction of V02+ over 
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zinc amalgam and used immediately. Solutions of Fe(CI04)2*6H20 were 

prepared in dilute aqueous perchloric acid, degassed, and placed over zinc 

amalgam. The concentration was determined spectrophotometrically by 

addition of an aliquot to excess 1,10-phenanthroline (Fisher), forming 

Fe(phen)32+ which has £510 = 1.11 x 10^ L mol-icm-\32 Solutions of 

Ru(NH3)6(CI04)2 were prepared by dissolution in dilute perchloric acid. 

These were flushed with argon and placed over zinc amalgam. 

Concentrations were determined spectrophotometrically at 275 nm (e = 620 

L mol-icm-1). Titanium(lll) solutions were prepared and treated as described 

in Part I of this dissertation. 

The complexes [Co(C-meso-Me6[14]aneN4)(H20)2](CI04)2 and meso-

[Co(Me6[14]4,11-dieneN4)(H20)2](CI04)2 were prepared as described in the 

literature.33 Solutions of trans-Co([14]aneN4)(H20)22+ were prepared by 

mixing anaerobic degassed solutions of Co(CI04)2 and cyclam (Aldrich). 

This was stirred until complex formation was complete (ca. 10 min.), acidified 

to 0.05 M HCIO4 and transferred without contact with air to zinc amalgam.34 

The complex was stored in ice and used within 1.5 hours. Concentrations 

were determined spectrophotometrically at 460 nm (e = 21.5 L mol-^cm-

1) 35,36 The complex was added to cells buffered at pH 7.0 just before the 

flash photolysis experiment to minimize isomerization to the cis isomer.37,38 

Solutions of Bi2r were prepared by zinc amalgam reduction of Bi2a in 

neutral solution and used immediately. 

Thiolatochromium(lll) complexes of the formula (H20)5CrSR2+ were 

prepared and purified using several different methods. An acidic aqueous 

solution of Cr(H20)62+ and excess disulfide was photolyzed at 254 nm using 
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a Rayonet photochemical reactor with medium pressure mercury lamps. 

The reaction mixture was ion-exchanged on a cooled, degassed column of 

Sephadex C25 cation-exchange resin. However, despite repeated 

washings , the sample, eluted with 0.5 M NaCIO# in 0.01 M HCIO4, still 

contained disulfide. A second method was similar to the laser experiments, 

using similar concentrations of RCo([14]aneN4)2+, RSH and Cr2+, but on a 

much larger scale (~ 15 times larger). Upon cation exchange the pure yellow 

complex was eluted with 0.5 M NaCI04 in 0.01 M HCIO4. This method 

allowed small amounts of CrSR2+ to be obtained pure. The last method 

employed was the reaction39.40 of Cr(H20)6^+ with (CH3)2CHSCo(dmgH)2 

which was prepared according to the literature procedure for the MeS- and 

PhS-derivatives.4i The complex was again purified by cation-exchange 

chromatography and eluted with 0.8 M HCIO4. This last method allowed 

preparations to be carried out on a much larger scale. 

Analyses 

Chromium analyses were carried out on the thiolatochromium(lll) 

complexes by oxidation to chromate (6372 = 4830 L moMcm-i) in basic 

peroxide.42 Ethane thiol was detected using a Hewlett Packard 5790 A gas 

chromatograph with a Porapak Q column at 170 "C. 

The sulfur to chromium ratio was determined using inductively coupled 

plasma mass spectrometry (ICP/MS). First the complex, (H20)5CrSC2H52+, 

was prepared by photolyzing a solution containing CH3Co([14]aneN4)2+, 

C2H5SH and Cr2+ with visible light, as described above. The product 

mixture was ion-exchanged on Sephadex C-25 as above, but eluted with 

0.10 M LiBr/2 mM H Br. Sodium must be avoided because of the space 
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charge effect and chlorine must be avoided because its mass to charge ratio 

is simil iar to that of sulfur. The instrument, as described previouslywas a 

Sciex Elan Model 250 (Perkin-Elmer, Thomhill, Ontario). Sample was 

introduced to the plasma by means of a Cetac U-5000 ultrasonic nebulizer. 

The ICP torch was of Ames Laboratory design described previously.'^^ 

Sulfur was monitored at m/z of 34 and chromium at both mass to charge 

ratios of 52 and 53. A blank solution containing 0.10 M Li Br/2 mM HBr was 

injected to determine the background readings. Also, a standard was 

prepared containing 1.1 x 10 ^ M CrBra and 5.5 x 10 s M diethyl disulfide in 

0.10MLiBr/2mM HBr. 

Laser gxpgrlmgnts 

Reactions of carbon- and sulfur-centered radicals were measured using 

a visible dye laser flash photolysis system like that described in Part I of this 

dissertation. The excitation dye (Exciton) used was LD 490 (1 x 10-4 M in 

methanol containing 1 % Ammonyx LO). The increases in absorbance due 

to formation of ABTS*- or TMPD'+ were monitored at 650 nm (e = 1.20 x 10^ L 

mol''cm-i)4i for ABTS" and at 565 nm (e = 1.25 x 10^ L moMcm 1)45 for 

TMPD-+. 

The Nd:YAG laser system used here was an LKS.50 Laser Photolysis 

Spectrometer from Applied Photophysics Limited. The laser itself was an 

SL800 system from Spectron Laser Systems. The fundamental wavelength 

output from the Nd:YAG laser (Q-switched) was frequency quadrupled by 

propagation through nonlinear harmonic generating crystals yielding 266 nm 

light. The laser beam was set up perpendicular to the monitoring beam, a 

pulsed xenon lamp. The monitoring beam passed through the cell and 
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through a grating monochromator to a five stage photomultiplier tube. The 

signal was recorded on a PM3323 Philips digital oscilloscope interfaced to 

an Archimedes 420/1 computer. The software used to control the laser 

system and to fit the kinetic data was developed by Applied Photophysics 

Limited. Using this system, diethyl disulfide was photolyzed directly at 266 

nm in the presence of Cr(H20)6^+. The formation of (H20)5CrSR2+ was 

monitored directly at 280 nm without the use of a kinetic probe. The data 

were fitted to a first-order equation, Abst = AbSoo + (AbSo-AbSoo)exp(-kt). 
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RESULTS 

Generation of radicals 

One method used in this study involved producing a burst of carbon-

centered radicals (~1 x 10-6 M) by visible (490 nm) laser flash photolysis of 

aqueous solutions containing R'Co([14]aneN4)(H20)2+ (typically 1 x 10-4 M) 

as in eq 12.34 with a water-soluble thiol present, such as ethanethiol, 

cysteine or glutathione, the repair reaction was employed to generate thiyi 

radicals (eq 13). Because thiyI radicals are not highly colored,18 two kinetic 

probes were used. ThiyI radicals were allowed to react with ABTS^- in a 

known reaction (eq 14)47.48 to yield the highly colored radical anion, ABTS'-. 

Another probe used was TMPD, which is easily oxidized to the radical cation 

TMPD*+, which is also highly colored. ThiyI radicals were observed to 

oxidize TMPD in neutral solution, but not in acidic solution, as the protonated 

amine is much less easily oxidized. 

R'Co([14]aneN4)^+ + hv -> R'- + Co([14]aneN4)^+ (12) 

R' + RSH -4 R'H + RS (13) 

R + R -4 R2 or R("H) + RH (14) 

RS + ABTS^- ^ RS" + ABTS" (15) 
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Kinetics 

The repair reaction was studied using this method for methyl and ethyl 

radicals. With [ABTS2-] » [RSH] (10-2 and 10M, typically) reaction 13 is 

rate limiting. Under these conditions the observed rate constant is given by 

eq 16. The first temri in eq 16 is due to carbon-centered radical 

dimerization^s and is small (generally < 5 % of kobs). The second term, 

ki3[RSH], is due to the repair reaction (eq 13). As described in Part II of this 

dissertation eq 16 may be approximated by first order kinetics with the first 

term being approximately 2kd[R*]. Thus, the first order rate constant is 

directly proportional to [RSH] and is independent of [ABTS^-]. A plot of kobs 

vs. [RSH] is expected to be linear with a slope corresponding to the second 

order repair reaction rate constant, kr, and a small intercept due to radical 

dimerization. Such a plot is given in Figure 1 for the reaction of «CHs with 

cysteine at pH 7.0. The repair reaction was also studied for «CHs with ethane 

thiol and glutathione and for «CaHs with ethane thiol. The second order rate 

constants are given in Table 1 and the corresponding plots of kobs vs. [RSH] 

are given in the Appendix in Figures A1-A4. Also given in Table 1 are 

several repair reaction rate constants from pulse radiolysis studies carried 

out previously.®'®'® 

kobs = 2ki4[R'f + ki3[RSH] (16) 

When [ABTS2-] « [RSH], reaction 13 is rapid and rates of reaction of RS* 

with ABTS2- can be determined. With 0.10 M thiol present reaction 13 is 

complete within 1 |is and reaction 15 (carbon-centered radical dimerization) 
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Figure 1. Reaction of •CH3 with cysteine at pH 7.0 using ABTS2- as a 

kinetic probe 
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Table I. Rate constants (25 °C) for hydrogen abstraction by methyl and 
ethyl radicals from thiols (CysSH = cysteine, GSH = glutathione)^ 

R' RSH pH kis/107 L mol-is-i  

CH3. CH3SH 11 7.4b 

C2H5SH 1.0 4.0 ± 0.2 

7.0 4.7 ± 0.2 

CysSH 7.0 7.4 ±0.2 

GSH 7.0 7.1 ±0.2 

CH3CH2* C2H5SH 7.0 2.8 ±0.1 

•CH2OH CysSH 7.0 4.2c 

HOCH2CH2SH 10 13b 

NH2CH2CH2SH 7.6 6.8d 

a Errors given are standard deviations in the dataset as calculated by a 
nonlinear least-squares fitting program, b Reference 8. ^Reference 5. 
dReference 6. 

is unimportant. With relatively low (10-4 M) concentrations of ABTS2-

present, reaction 17 must also be considered as a small, yet significant 

contribution to the observed rate constant (eq 18). Thus, a plot of kobs vs. 

[ABTS '̂] should be linear with an intercept corresponding to the thiyi radical 

dimerization and a slope of the second order rate constant for oxidation of 

ABTS2-. Figure 2 shows such a plot for the reaction of ethane thiyI radicals 

with ABTS2- at pH 1.0. The second order rate constant for this reaction as 

well as for the oxidation by cysteinyl radical are listed in Table 2 along with 

two values for cysteinyl radical from previous studies.̂ 7-49 TMPD was also 
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Figure 2. Oxidation of ABTS2- by C2H5S' at pH 4.0 
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Table 2. Rate constants (25 °C) for reactions of thiyi radicals with kinetic 
probes® 

Probe RS' pH k/107 L moMs-1 

ABTS2- C2H5S* 1.0 5.6 ± 0.2 

CysS* 4.0 78 ±2 

3.75 100b 

7.1 50C 

TMPD CgHgS* 7.0 260 ± 10 

a Errors given are standard deviations in the dataset as calculated by a 
nonlinear least-squares fitting program, b Reference 45. ^Reference 46. 

oxidized by C2H5S', forming TMPD*+ at pH 7.0. The value of the second 

order rate constant for reaction of C2H5S' with TMPD is also listed in Table 2. 

Corresponding plots of kobs vs. [ABTS2-] or [TMPD] are given in the Appendix 

in Figures AS and A6. 

RS-+ RS--> RSSR (17) 

kobs = 2ks[RS-]2 + kA[ABTS2-] (18) 

Knowledge of the rate constants for reactions of thiyI radicals with kinetic 

probes allows the study of their reactions with various metal complexes, 

using the competition method. Typical conditions used were as follows: 

1 X 10-4 M CH3Co([14]aneN4)2+, which would generate ~1 x 10® M 'CH3 in 

the laser flash (eq12); 0.10 M C2H5SH, to efficiently capture methyl radicals, 
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generating C2H5S' (eq 13); ~6 x 10-4 h/l ABTS^- or ~2 x 10® M TMPD as a 

kinetic probe; and appropriate amount of reduced metal complex (eq 19) to 

make a measurable contribution to the observed pseudo-first order rate 

constant (eq 20). A trace is shown in Figure 3 with 1.2 x 10 ^ M Cr(H20)6^+ 

present. Because of the data acquisition sequencing, the plot shows several 

points before the flash and immediately following there is a rapid increase in 

absorbance at 650 nm. (Note also the slower decay in absorbance second 

stage that is explained below.) A corrected first-order rate constant, kcorr. is 

calculated according to equation 21. Thus, a plot of kcorr vs. [L6M"+] is 

expected to be a straight line with a slope of km and a zero intercept. Such a 

plot is shown in Figure 4 for the reaction of C2H5S' with Cr(H20)6^+. Each 

point on the line is the average of 3-4 shots on one cell. The rate constants 

for reactions of C2H5S' with a variety of metal complexes are given in Table 

3. The corresponding plots of kcorr vs. [UMn+J are given in the Appendix in 

Figures A7-A12. The macrocyclic cobalt(ll) complexes precipitate out in the 

presence of the required amount of ABTS '̂, so TMPD was used as the probe 

in those cases. 

RS- + ^ L5MSR2+ + L (19a) 

RS- + UM"^ ^ L6lV|("+i)+ + RS" (19b) 

kobs = 2ks[RSf + kA[ABTS2-] + kn,[L6M"+] (20) 
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Figure 3. Kinetic trace monitored at 650 nm due to formation of ABTS- in 

tlie presence of 1.2 x 10-4 M Cr2+ at pH 1.0. 
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Figure 4. Reaction of CaHsS* with Cr(ll) at pH 1.0 using ABTS2- as a 

kinetic probe 
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Table 3. Rate constants (25 °C) for reactions of C2H5S' with transition 
metal complexes.® 

Metal Complex / L moMs'̂  PH 

Cr(H20)6^+ (4.9 ± 0.2) X10® 

V(H20)6^+ (6.5 ± 0.3) X10® 10 

Fe(H20)6^+ (1.2±0.1)x 10® 1 0 

Co([14]aneN4)^+ ~ 4.5 x 10® 7.0 

Co([Meg[14]aneN4)2+ (3.3 ± 0.3) x 10® ^ ^ 

Co(Me6[14]dieneN4)2-' (3.1 ± 0.3) x 10® ^.0 
Vitamin B^2r (1.0 ± 0.1) x 10^ ^.0 

^Errors given are standard deviations in the dataset as calculatedby a 
nonlinear least-squares fitting program. 

kcorr = kobs " (2ks[RSf + kAlABTS^"]) = kn,[L6M"T (21 ) 

Formation of ethanethiolatochromium(lll) was observed directly at 280 

nm. Using a NdrYAG laser, diethyl disulfide was directly photolyzed at 266 

nm in the presence of Cr(H20)6^+. This laser system allowed much higher 

concentrations of Cr(H20)6^+ to be used, as it is capable of measuring much 

higher rates. Thus, the radical dimerization reaction was even less 

significant. At 280 nm a single exponential increase in absorbance was 

observed and was permanent for at least 400 ^s. The kobs value was directly 

proportional to [Cr(H20)62+] as given by eq 22. A plot of kobs vs. 

[Cr(H20)62+] is given in Figure 5 and the slope of the line corresponds to kcr 

= (4.9 ± 0.2) X 108 L mol 1S""". 

kobs = 2ks[RSf + kcr[Cr2+] (22) 
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Figure 5. Reaction of CaHsS* with Cr(H20)6^+ studied by photolyzing 

diethyl disulfide at 266 nm and monitoring thiolato-chromium 

formation at 280 nm 
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Product studies 

Ethanethiolatochromium(lll) was prepared by photolyzing a solution 

containing CH3Co([14]aneN4)2+, C2H5SH and Cr2+ with visible light on a 

scale ~ 15 times that of the laser experiments and was purified by cation-

exchange chromatography. It was destroyed by addition of O2, Hg(ll) or Brz. 

In the case of (H20)5CrSC2H52+ the complex has a half-life of ~30 min. in 

0.10 M HCIO4 and exhibits Xmax = 280 nm (e = 7400 ± 100 L moMcm I). The 

chromium to sulfur ratio was determined by ICP/MS to be 1.1:1; consistent 

with the formula (H20)5CrSC2H52+, 

To check for reaction 19b, disulfide was photolyzed at 254 nm in the 

presence of the metal complex. With either V(H20)62+ or Fe(H20)62+ 

present, thiol was detected as a product using GC. However, no thiol was 

found when diethyl disulfide was photolyzed with Cr(H20)62+ present. 

When reactions of thiyi radicals with Cr(H20)62+ or V(H20)62+ are 

studied using ABTS^- as a kinetic probe, two stages of reaction are observed. 

Following the laser flash there is an increase in absorbance at 650 nm due to 

the formation of ABTS*' (eq 15). But there is also a slower decrease in 

absorbance due to the reaction of Cr(H20)62+ or V(H20)62+ with ABTS- (eq 

23). This reaction was studied by using relatively high concentrations of 

ABTS2-, so that the first stage was very fast. A typical trace is shown for the 

reaction of V(ll) with ABTS" in Figure 6. The second stage was studied by 

varying the concentration of metal ion. The second order rate constants for 

the reduction of ABTS" are (1.1 ±0.1) x 108 and (2.6 ±0.1) x 108 L moMs'i 

for Cr(H20)62+ and V(H20)62+ respectively. 

ABTS- + M(ll) ^ ABTS^- + M(lll) (23) 
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6. Kinetic trace monitored at 650 nm due to formation and loss of 

ABTS'- in the presence of 6.2 mM ABTS2- and 3 x 10 ^ M V2+ at 

pH 1.0. 
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DISCUSSION 

The complexes RCo([14]aneN4)2+ with R = Me and Et are known to 

generate carbon-centered radicals when photolyzed with visible (490 nm) 

light and have been used in studies of alkyi radicals with metal complexes.so 

Here, it is not the carbon-centered radicals that are of primary interest and 

they have been used simply as a means for generating sulfur-centered 

radicals. 

Probably the most important reaction involving thiyi radicals is the 

reversibleii repair reaction (eq 4). A number of studies, mostly pulse 

radiolyis studies, have been carried out on this subject and usually involved 

a-hydroxyalkyi radicals. However, such equipment is not available to most 

researchers. The use of RCo([14]aneN4)2+ complexes allows a series of 

primary hydrocarison radicals to be studied.34 in this study methyl and ethyl 

radicals were studied with thiols such as ethane thiol, cysteine and 

glutathione. Glutathione Is the most Important thiol to use In repair reaction 

studies, because of Its presence in cells in the body (GSH ^ 0.01 M).5i 

Almost no steric effect is observed in the abstraction of a hydrogen atom from 

ethane thiol (see Table I). At pH 7.0 methyl radical reacts with ethane thiol 

with a second order rate constant of (4.7 ± 0.2) x 10^ L mol-is*"' and ethyl 

radical reacts with a second order rate constant of (2.8 ±0.1) x 10^ L 

mol'is'i. This small difference is not unexpected as no steric effect was 

reported in going from primary to tertiary alkyI radicals for abstraction of 

hydrogen from thiophenol.52 Cysteine and glutathione were found to have 

virtually the same rate of repair with methyl radicals (~7 x 10^ L moMs-i). 

The repair reaction rate constant for CHa* with CgHgSH was also detennined 
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at pH 1, since the reactions with simple hexaaqua metal ions were studied at 

pH 1. A few values of repair reaction rate constants from the literature are 

also listed in Table I. These values show that kr = 10^-108 L mol'̂ s'̂  are 

typical. 

The reverse of the repair reaction (eq 24) has been studied for alcohols 

and occurs with rate constants of 10^-10^ L mol For this reason 

cosolvents were avoided and all studies were carried out in strictly aqueous 

solution. Thiols were chosen based on their solubility, and most of the 

studies with metal complexes were carried out with ethane thiol as it has a 

solubility in water at 20 °C of 0.112 M, more than enough to efficiently 

capture virtually all «CHs. Of course, cysteine and glutathione are also 

soluble. 

RS + R'H ^ RSH + R' (24) 

The thiyi radicals are difficult to observe directly and studies have often 

been carried out in the presence of excess thiolate. Under these conditions 

the disulfide radical anion forms readily (eq 8). These absorb in the region 

380-450 nm with extinction coefficients of (6-7) x 10^ L mol Icm-\18 

However, the pKa values for most thiols ^ 8. There is also the problem under 

these conditions of separating reactions of thiyI radicals from those of the 

disulfide radical anion. Thus, for the study of metal complexes in acidic and 

neutral aqueous solution, we turned to kinetic probes that would be stable in 

the region pH 1-7. 
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Cysteinyl radicals have been reported30>47,49 to oxidize ABTS^- to 

ABTS", a highly colored, persistent radical. As «CHa does not oxidize 

ABTS2-, the increases in absorbance at 650 nm upon addition of thiol were 

indicative of the formation of thiyi radicals. The oxidation of ABTS^- was 

studied for cysteinyl radicals at pH 4 (see Table 2) and the second-order rate 

constant obtained was relatively close to the value of 1.0 x 10^ L moMs'i 

reported at pH 3.75.^7 The reaction of C2H5S' with ABTS^- was studied 

under the same conditions as the reactions with metal complexes (pH 1, see 

below). This is a much slower reaction, probably because the protonated 

form, HABTS-, is more difficult to oxidize than the unprotonated form (pKa = 

2.2). 

As mentioned above, the cobait(ll) complexes used in this study 

precipitated out with ABTS2-. Thus, another probe, TMPD, was also used. 

TMPD is easily oxidized, having E° = 0.27 V vs. NHE at pH 7. The radical 

cation, TMPD*+, is stable for more than a week.54 Ethane thiyI radicals were 

found to oxidize TMPD in a diffusion-controlled process (see Table 2). The 

mechanism of oxidation is most likely electron transfer as other radicals react 

at similar rates and a reaction involving hydrogen transfer should be slower. 

Other studies have shown that TMPD is oxidized by the radical 'CH2CH054 

with a rate constant of 2.1 x 10^ L moMs-1 and by substituted methylperoxyl 

radicals at rates that vary from 10®-109 L moMs \ increasing as the electron-

withdrawing capacity of the substituent on the peroxy group increases.55 

The lack of reaction at pH 1 is due to protonation of the TMPD, which has a 

pKa = 5.3.56,57 The discovery of this simple reaction may actually be a very 

significant portion of this work. TMPD may be used to easily detect thiyI 
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radicals and follow their reactions at physiological pH. The high rate of 

reaction means that very low concentrations of TMPD will efficiently capture 

any RS* formed. 

We have examined reactions between CgHgS* and M(H20)6^+ (M = 

Cr.V.Fe) at pH 1 using ABTS^- as a kinetic probe. The reactions of thiyi 

radicals with Cr2+ occur about twice as fast as those of alkyi radicals.34 The 

dimerization reactions of thiyI radicals58.59 also occur slightly faster than 

those of alkyI radicals.®o The reaction with Cr^+ was expected to be an 

inner-sphere process (eq 19a) and to form stable thiolatochromium(lil) as a 

product. Two similar compounds that are known to be stable for hours are 

(H20)5CrSC6H4NH33+ and (H20)5CrSC6H4N(CH3)33+.®"' Also known is 

the hydrogensulfidochromium(lll) ion, (H20)5CrSH2+.62 indeed, Cr2+ was 

observed to react with C2H5S' by an inner-sphere mechanism. When 

disulfide was photolyzed in the presence of Cr2+, an increase in absorbance 

at wavelengths below 300 nm was observed, suggesting Cr-S bond 

formation. No free thiol was detected as a product as would be expected 

from an outer-sphere reaction (eq 19b). Ethanethiolatochromium was 

isolated by cation-exchange chromatography and exhibited an absorption 

band at 280 nm, characteristic of a Cr-S MLCT band.6i-64 This work has 

shown that generating thiyI radicals in the presence of Cr2+ is one method of 

preparing the thiolatochromium(lll) complexes, since Cr^+ does not react 

directly with simple (methyl, ethyl) disulfides. 

The Fe(H20)62+ reaction with C2H5S» is inferred to also go by inner 

sphere mechanism since its rate constant (1.2 x 10® L moMs-1) is 

comparable to that for the reaction of Br2" with Fe(H20)62+ (3.6 x 10® L 



www.manaraa.com

; 

128 

moh^s-i), which is known to be an inner sphere process.65 The substitution 

rate for Fe{H20)6^+ is ca. 10-102 L mol-^s-i and can be considered to be 

inert on the time scale of the oxidation by ethane thiyi radicals. However, the 

initial product of the reaction, (H20)5FeSC2H52+, was not observed, 

probably due to low extinction coefficients. 

Oxidation of V(H20)62+ by alkyi radicals in aqueous solution occurs with 

rate constants in the range (1-6) x 10^ L moMs'i and shows little 

dependence on the steric bulk of the radical. The mechanism suggested for 

this reaction involves radical attack at a trigonal face of V(H20)62+. This 

allows for electron transfer to occur, yielding a transient seven coordinate 

intermediate, (H20)6VR2+, which undergoes protonolysis to yield V(lll) and 

alkane.66,67 Ethane thiyI radical oxidizes V(H20)62+ with a second order 

rate constant of (6.5 ± 0.3) x 10^ L moMs'̂ . It seems likely that the 

mechanism again involves radical attack at a trigonal face of V(H20)62+ 

where a bond to sulfur can be formed as the electron is transferred. 

However, the thiyI radical reacts much more rapidly than the alkyI radical 

despite the lower driving force for the reaction. The large sulfur-centered 

radical may be better able to provide orbital overlap than a carbon-centered 

radical, facilitating electron transfer. The proposed intermediate, 

(H20)6VSR2+, was not observed directly, which I attribute to either its 

expected short lifetime or low extinction coefficients. 

In the reactions of ethane thiyi radicals with CoL2+ complexes where L = 

[14]aneN4, Me6[14]aneN4 and Me6[14]4,11-diene, the rate constants are all 

about the same, falling in the range (3.1-4.5) x 10® L moMs-\ The faster 

reaction with Bi2r is probably due to the larger driving force.®® It may also be 
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significant that the cobalt of Bi2r is penta-coordinate in neutral solution.69 

The complexes of Co([14]aneN4)2+, Co(Me6[14]aneN4)2+ and 

Co(Me6[14]4,11-diene)2+ are most likely hexa-coordinate in solution70,7i 

Again the thiyi radicals are observed to react faster than alkyi radicals/o The 

reactions of methyl and ethyl radicals with Co([14]aneN4)2+ and 

Co(Me6[14]aneN4)2+ have rate constants of (1-4) x 10^ L moMs Rate 

constants for reactions of alkyI radicals with Bi2r are typically (4-6) x 108, 

while C2H5S' reacts with a rate constant of (1.0 ± 0.1) x 10^ L mol-isi. 

The reactions of thiyI radicals with these cobalt(ll) complexes are 

expected to yield thiolatocobalt(lll) complexes. However the formation of 

these complexes was not observed directly, despite the expected LMCT 

band in the 250-300 nm region.72 This band should occur at lower energy 

(and thus, be more easily observable) than the thiolatochomium(lll) LMCT 

band, since cobalt(lll) is a better oxidant than Cr(lll). It may be that these 

cobalt(lll) complexes are simply less strongly absorbing. The lack of thiol 

formation when disulfide is photoiyzed in the presence of Co([14]aneN4)2+ 

supports an inner-sphere reaction with the formation of a stable 

thiolatocobalt(lll) product. Also, a number of mono- and bidentate 

thiolatocobalt(lll) complexes are known to be stable, such as Co(en)2SR2+ 73 

and RSCo(dmgH)2.3® 

Many of the previous studies involving thiyI radicals were earned out 

pulse radiolytically. We have now developed a convenient method of 

generating and studying reactions of thiyI radicals using visible laser flash 

photolysis. Pulse radiolysis and flash photolysis have often been 

complementary in terms of the experiments that could be carried out. Pulse 



www.manaraa.com

130 

radiolysis produces hydroxyl radicals, which behave as oxidants, as well as 

solvated electrons and hydrogen atoms, which are reductants. The 

capability to produce either reducing or oxidizing species (by using suitable 

concentrations of HCO2' and N2O) is sometimes a great advantage. 

However, flash photolysis has the advantage that it allows a specific 

molecule to be targeted by choosing an appropriate excitation wavelength. 

The method described here may be applied to the study of the biologically 

significant cysteinyl and glutathionyl radicals without requiring the pulse 

radiolysis equipment. It is particularly suited to the study of thiyI radicals with 

metal complexes and should prove useful in many inorganic and 

bioinorganic studies. 
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APPENDIX 
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Figure A1. Reaction of •CH3 with C2H5SH at pH 1.0 using ABTS2- as a 

kinetic probe 
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Figure A2. Reaction of «CHa with C2H5SH at pH 7.0 using ABTS2- as a 

kinetic probe 
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Figure A3. Reaction of •CH3 with glutathione at pH 7.0 using ABTS2- as a 

kinetic probe 
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Figure A4. Reaction of •CH2CH3 with C2H5SH at pH 7.0 using ABTS2-

a kinetic probe 
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Figure AS. Reaction of CysS* with ABTS2- at pH 4.0 



www.manaraa.com

140 

(0 

10-

I • I ' I • I • I • I ' 

0 10 20 30 40 50 60 

[TMPD]/10 t# 

Figure A6. Reaction of C2H5S' with TMPD at pH 7.0 
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Figure A7. Reaction of C2H5S' with V(H20)62+ at pH 1.0 using ABTS2-

a kinetic probe 
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Figure A8. Reaction of C2H5S' with Fe(H20)6^+ at pH 1.0 using ABTS^-

as a kinetic probe 
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Figure A9. Reaction of CaHsS* with Co(cyclam)2+ at pH 7.0 using TMPD 

as a kinetic probe 
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Figure A10. Reaction of C2H5' with Co(Me6cyclam)2+ at pH 7.0 using 

TMPD as a kinetic probe 
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Ail. Reaction of C2H5* with Co(Me6dieneN4)2+ at pH 7.0 using 

TMPD as a kinetic probe 
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A12. Reaction of CaHs» with Vitamin Bi2r at pH 7.0 using TMPD 

a kinetic probe 
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GENERAL SUMMARY 

The kinetics of the quenching of the excited state of chromium 

polypyridine complexes by Ti(lll) were studied by laser flash photolysis. The 

dependence of the rate on hydrogen Ion concentration indicates that both 

TI(H20)6^+ and (H20)5Ti(OH)2+ quench. The formation of a stable Cr(ll) 

product was observed spectrophotometrically, indicating back electron 

transfer occurs too slowly to measure. This is explained by the instability of 

TiO+, the Immediate product of back electron transfer. 

AlkyI radicals, generated from the photohomolysis of organocobalt 

complexes, were allowed to react with (H20)2Cr([15]aneN4)2+ ([l5]aneN4 = 

1,4,8,12-tetraazacyclopentadecane). The reaction rates were evaluated by 

laser flash photolysis, using the known reaction between R* and the methyl 

viologen radical cation as a kinetic probe. 

Thlyl radicals were generated by reaction of carbon-centered radicals 

with thiols. This reaction, known as the repair reaction, was studied for alky I 

radicals with ethane thiol, cysteine and glutathione. Reactions of thlyl 

radicals with various transition-metal complexes were Investigated using 

ABTS2- and TMPD as kinetic probes. 
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